Patents by Inventor Kiyofumi Takamaru

Kiyofumi Takamaru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7935305
    Abstract: The present invention relates to hydrogen storage alloys, methods for producing the same, and anodes produced with such alloys for nickel-hydrogen rechargeable batteries. The alloys are useful as electrode materials for nickel-hydrogen rechargeable batteries, excellent, when used as anode materials, in corrosion resistance or activity such as initial activity and high rate discharge performance, of low cost compared to the conventional alloys with a higher Co content, and recyclable. The alloys are of a composition represented by the formula (1), and has a substantially single phase structure, and the crystals thereof have an average long axis diameter of 30 to 160 ?m, or not smaller than 5 ?m and smaller than 30 ?m. The present anodes for rechargeable batteries contain at least one of these hydrogen storage alloys: RNixCoyMz??(1) (R: rare earth elements etc., M: Mg, Al, etc., 3.7?x?5.3, 0.1?y?5.0, 0.1?z?1.0, 5.1?x+y+z?5.5).
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: May 3, 2011
    Assignee: Santoku Corporation
    Inventors: Kiyofumi Takamaru, Hideaki Ikeda, Koji Tatsumi
  • Publication number: 20100301283
    Abstract: The present invention relates to hydrogen storage alloys, methods for producing the same, and anodes produced with such alloys for nickel-hydrogen rechargeable batteries. The alloys are useful as electrode materials for nickel-hydrogen rechargeable batteries, excellent, when used as anode materials, in corrosion resistance or activity such as initial activity and high rate discharge performance, of low cost compared to the conventional alloys with a higher Co content, and recyclable. The alloys are of a composition represented by the formula (1), and has a substantially single phase structure, and the crystals thereof have an average long axis diameter of 30 to 160 ?m, or not smaller than 5 ?m and smaller than 30 ?m. The present anodes for rechargeable batteries contain at least one of these hydrogen storage alloys. RNixCoyMz??(1) (R: rare earth elements etc., M: Mg, Al, etc., 3.7?x?5.3, 0.1?y?5.0, 0.1?z?1.0, 5.1?x+y+z?5.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 2, 2010
    Applicant: SANTOKU CORPORATION
    Inventors: Kiyofumi Takamaru, Hideaki Ikeda, Koji Tatsumi
  • Publication number: 20080014502
    Abstract: The present invention relates to hydrogen storage alloys, methods for producing the same, and anodes produced with such alloys for nickel-hydrogen rechargeable batteries. The alloys are useful as electrode materials for nickel-hydrogen rechargeable batteries, excellent, when used as anode materials, in corrosion resistance or activity such as initial activity and high rate discharge performance, of low cost compared to the conventional alloys with a higher Co content, and recyclable. The alloys are of a composition represented by the formula (1) and has a substantially single phase structure, and the crystals thereof have an average long axis diameter of 30 to 160 ?m, or not smaller than 5 ?m and smaller than 30 ?m. The present anodes for rechargeable batteries contain at least one of these hydrogen storage alloys. RNixCoyMz ??(1) (R: rare earth elements etc., M: Mg, Al, etc., 3.7?x?5.3, 0.1?y?0.5, 0.1?z?1.0, 5.1?x+y+z?5.
    Type: Application
    Filed: August 13, 2007
    Publication date: January 17, 2008
    Applicant: SANTOKU CORPORATION
    Inventors: Kiyofumi Takamaru, Hideaki Ikeda, Koji Tatsumi
  • Patent number: 7160502
    Abstract: The present invention relates to a method for readily producing an anode for rechargeable batteries having conflicting properties in good balance, including the corrosion resistance and the activities such as the initial activity and the high rate discharge performance, and having excellent recyclability. The method includes the steps of mixing and molding anode materials containing an electrically conductive material and at least two kinds of AB5 type hydrogen storage alloys, wherein said alloys have substantially single phase structures and the same composition, wherein each of the alloys have an average crystal long axis diameter of 30 to 350 ?m, and wherein the alloys have different ratios (D1/D2) of the average crystal long axis diameter (D1) to the average short axis diameter (D2).
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: January 9, 2007
    Assignee: Santoku Corporation
    Inventors: Kiyofumi Takamaru, Hideaki Ikeda, Koji Tatsumi
  • Publication number: 20040217327
    Abstract: The present invention relates to a method for readily producing an anode for rechargeable batteries having conflicting properties in good balance, including the corrosion resistance and the activities such as the initial activity and the high rate discharge performance, and having excellent recyclability. The method includes the steps of mixing and molding anode materials containing an electrically conductive material and at least two kinds of AB5 type hydrogen storage alloys, wherein said alloys have substantially single phase structures and the same composition, wherein each of the alloys have an average crystal long axis diameter of 30 to 350 &mgr;m, and wherein the alloys have different ratios (D1/D2) of the average crystal long axis diameter (D1) to the average short axis diameter (D2).
    Type: Application
    Filed: December 4, 2003
    Publication date: November 4, 2004
    Inventors: Kiyofumi Takamaru, Hideaki Ikeda, Koji Tatsumi
  • Publication number: 20040159377
    Abstract: The present invention relates to hydrogen storage alloys, methods for producing the same, and anodes produced with such alloys for nickel-hydrogen rechargeable batteries. The alloys are useful as electrode materials for nickel-hydrogen rechargeable batteries, excellent, when used as anode materials, in corrosion resistance or activity such as initial activity and high rate discharge performance, of low cost compared to the conventional alloys with a higher Co content, and recyclable. The alloys are of a composition represented by the formula (1), and has a substantially single phase structure, and the crystals thereof have an average long axis diameter of 30 to 160 &mgr;m, or not smaller than 5 &mgr;m and smaller than 30 &mgr;m. The present anodes for rechargeable batteries contain at least one of these hydrogen storage alloys.
    Type: Application
    Filed: March 5, 2004
    Publication date: August 19, 2004
    Inventors: Kiyofumi Takamaru, Hideaki Ikeda, Koji Tatsumi
  • Patent number: 5932084
    Abstract: A process for producing rare earth metals including the step of electrolyzing a starting material containing rare earth carbonates as main ingredients in a molten salt electrolytic bath containing rare earth fluorides, lithium fluoride, and barium fluoride at a bath temperature of 750 to 950.degree. C. while adjusting an anode potential to an electrolytic potential of fluorides. This method allows production of rare earth metals at a high current density and a high current efficiency, while ensuring prolongation of life time of an electrolytic cell and electrodes by performing the electrolysis at a lower bath temperature, and suppressing generation of toxic fluorine-containing gases.
    Type: Grant
    Filed: June 20, 1997
    Date of Patent: August 3, 1999
    Assignee: Santoku Metal Industry Co., Ltd.
    Inventor: Kiyofumi Takamaru