Patents by Inventor Kiyoharu Nakagawa

Kiyoharu Nakagawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8557213
    Abstract: A novel carbon nanotube (64) is featured in that it has the highest Raman scattering intensity in the vicinity of 1580 cm?1 in its Raman spectrum. Carbon nanotubes can be grown on and from the catalytic fine particles (63) which consist of ultra-fine particles of cobalt oxide catalyst onto a substrate comprising a conductive substrate (62) and fine particles (63) of catalyst formed on a surface thereof. An electron emission device (60) so configured as to emit electrons by applying a voltage to apical ends (64a) of such carbon nanotubes (64) can be reduced in driving voltage and can achieve a current such as to emit a fluorescent material on the market for low-velocity electron beams. The electron emission device (60) needs no gate and can thus simplify the structure and reduce the cost of a surface light-emitting device for which the element is used.
    Type: Grant
    Filed: November 24, 2006
    Date of Patent: October 15, 2013
    Assignees: National Institute for Materials Science, Toppan Printing Co., Ltd.
    Inventors: Toshihiro Ando, Kiyoharu Nakagawa, Mika Gamo, Hidenori Gamo
  • Publication number: 20100296984
    Abstract: An apparatus for producing hydrogen from methanol in a simple manner comprises a container (4) that retains liquid methanol (2) as a source material and gases (3) generated therein, a substrate (5) that is immersed in liquid methanol (2) in the container (4) loaded with a catalyst, and a power supply (6) for passing a direct or an alternating current through the substrate (5). The substrate may be made of an oxide or oxidized material, especially oxidized diamond, and loaded with a transition metal catalyst, especially Ni catalyst. With the substrate (5) heated, a novel catalytic methanol decomposition reaction occurs by a combination of abrupt temperature gradient directing towards methanol from the surface of the substrate, a catalysis of the oxide or oxidized material of the substrate and a catalysis of the catalyst loaded on the substrate, and a large amount of hydrogen gas is produced.
    Type: Application
    Filed: July 16, 2010
    Publication date: November 25, 2010
    Applicants: JAPAN SCIENCE AND TECHNOLOGY AGENCY, NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Toshihiro Ando, Kiyoharu Nakagawa
  • Patent number: 7780945
    Abstract: A method that allows producing hydrogen from methanol in a simple manner and an apparatus that is small in size and light in weight, which can produce hydrogen from methanol, are provided. The apparatus comprises a container (4) that retains liquid methanol (2) as a source material and gases (3) generated therein, a substrate (5) that is immersed in liquid methanol (2) in the container (4) loaded with a catalyst, and a power supply (6) for passing a direct or an alternating current through the substrate (5). The substrate may be made of an oxide or oxidized material, especially oxidized diamond, and loaded with a transition metal catalyst, especially Ni catalyst.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: August 24, 2010
    Assignees: Japan Science and Technology Agency, National Institute for Materials Science
    Inventors: Toshihiro Ando, Kiyoharu Nakagawa
  • Publication number: 20100171409
    Abstract: A novel carbon nanotube (64) is featured in that it has the highest Raman scattering intensity in the vicinity of 1580 cm?1 in its Raman spectrum. Carbon nanotubes can be grown on and from the catalytic fine particles (63) which consist of ultra-fine particles of cobalt oxide catalyst onto a substrate comprising a conductive substrate (62) and fine particles (63) of catalyst formed on a surface thereof. An electron emission device (60) so configured as to emit electrons by applying a voltage to apical ends (64a) of such carbon nanotubes (64) can be reduced in driving voltage and can achieve a current such as to emit a fluorescent material on the market for low-velocity electron beams. The electron emission device (60) needs no gate and can thus simplify the structure and reduce the cost of a surface light-emitting device for which the element is used.
    Type: Application
    Filed: November 24, 2006
    Publication date: July 8, 2010
    Inventors: Toshihiro Ando, Kiyoharu Nakagawa, Mika Gamo, Hidenori Gamo
  • Patent number: 7608331
    Abstract: A fine spherical particle formed of diamond as a core and having carbon nano-materials radially grown therefrom is disclosed, which exhibits the appearance of a Marimo (Cladophora sauteri) particle. Fine diamond catalytic particles 2 whose surfaces are oxidized and treated to carry a transition metal catalyst are floated and stirred in a gas phase of hydrocarbon while being heated at a selected temperature to bring about a catalytic reaction which synthesizes carbon nano-materials and to grow them on the surface of said oxidized fine diamond particle. Nano fibers or filaments 32 of a nano size are grown from the fine diamond catalytic particle 31 as a core to form cladophora-form carbon. The carbon nano-materials if the supported transition metal is Ni or Co become carbon nano-tubes and if it is Pd become coin stacked carbon nano-graphite.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: October 27, 2009
    Assignee: National Institute for Materials Science
    Inventors: Toshihiro Ando, Kiyoharu Nakagawa, Mika Gamo, Hirokazu Oda
  • Publication number: 20060210471
    Abstract: A method that allows producing hydrogen from methanol in a simple manner and an apparatus that is small in size and light in weight, which can produce hydrogen from methanol, are provided. The apparatus comprises a container (4) that retains liquid methanol (2) as a source material and gases (3) generated therein, a substrate (5) that is immersed in liquid methanol (2) in the container (4) loaded with a catalyst, and a power supply (6) for passing a direct or an alternating current through the substrate (5). The substrate may be made of an oxide or oxidized material, especially oxidized diamond, and loaded with a transition metal catalyst, especially Ni catalyst.
    Type: Application
    Filed: March 9, 2004
    Publication date: September 21, 2006
    Inventors: Toshihiro Ando, Kiyoharu Nakagawa