Patents by Inventor Kiyohiko Saito

Kiyohiko Saito has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11724249
    Abstract: Provided are a high-performance Cu—P co-supported zeolite and the like having excellent thermal endurance and catalyst performance. A Cu—P co-supported zeolite comprising at least a small pore size zeolite, and an extra-backbone copper atom and an extra-backbone phosphorus atom supported on the small pore size zeolite, wherein a silica-alumina ratio (SiO2/Al2O3) is 7 or more and 20 or less, a ratio of the copper atom to a T atom (Cu/T) is 0.005 or more and 0.060 or less, a ratio of the phosphorus atom to the T atom (P/T) is 0.005 or more and 0.060 or less, and a ratio of the phosphorus atom to the copper atom (P/Cu) is 0.1 or more and 3 or less.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: August 15, 2023
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Yukio Takagi, Kiyohiko Saito, Yasuyuki Banno, Makoto Nagata
  • Publication number: 20230219822
    Abstract: A small-pore zeolite that is modified with phosphorus, is excellent in hydrothermal durability, and has an 8-membered oxygen ring structure. The 8-membered oxygen ring structure is CHA, AEI, and AFX. The small-pore zeolite incudes at least an aluminum element, a silica element, a phosphorus element, wherein the phosphorus element is defined by expression (1), and the small-pore zeolite has an 8-membered oxygen ring structure being of CHA, AEI, or AFX. The phosphorus element that modifies the zeolite is unevenly distributed and richly contained on the surface layer side of the zeolite. A method for producing a phosphorus element-containing zeolite.
    Type: Application
    Filed: April 6, 2021
    Publication date: July 13, 2023
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Yukio TAKAGI, Yasuyuki BANNO, Kiyohiko SAITO, Hiroyasu SUZUKA, Yosuke IMANAKA, Takahiko ISHIKAWA
  • Publication number: 20220213110
    Abstract: The present invention provides, for example, a compound represented by formula (1), or a salt thereof: wherein R1 to R4 are each independently an alkyl group.
    Type: Application
    Filed: May 8, 2020
    Publication date: July 7, 2022
    Applicants: OSAKA UNIVERSITY, N.E. CHEMCAT Corporation
    Inventors: Takato MITSUDOME, Yukio TAKAGI, Kiyohiko SAITO, Hiroyasu SUZUKA, Yosuke IMANAKA, Yasuyuki BANNO
  • Publication number: 20210379573
    Abstract: Provided are a high-performance Cu—P co-supported zeolite and the like having excellent thermal endurance and catalyst performance. A Cu—P co-supported zeolite comprising at least a small pore size zeolite, and an extra-backbone copper atom and an extra-backbone phosphorus atom supported on the small pore size zeolite, wherein a silica-alumina ratio (SiO2/Al2O3) is 7 or more and 20 or less, a ratio of the copper atom to a T atom (Cu/T) is 0.005 or more and 0.060 or less, a ratio of the phosphorus atom to the T atom (P/T) is 0.005 or more and 0.060 or less, and a ratio of the phosphorus atom to the copper atom (P/Cu) is 0.1 or more and 3 or less.
    Type: Application
    Filed: October 16, 2019
    Publication date: December 9, 2021
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Yukio TAKAGI, Kiyohiko SAITO, Yasuyuki BANNO, Makoto NAGATA
  • Patent number: 10882033
    Abstract: A slurry composition for a catalyst and a method for producing the same, a catalyst and a method for producing the same using the slurry composition for a catalyst. The method omits many heretofore required treatment steps and reduces catalyst production cost. The method comprising the steps of providing a slurry composition for a catalyst, comprising at least an aluminosilicate, Cu, and water, and having a solid concentration of 0.1% by mass to 90% by mass, wherein a component for a catalyst has composition represented by Al2O3·xSiO2·yT2O·zCuO (wherein T is a quaternary ammonium cation, and x, y and z are numbers that satisfy 10?x?40, 0.1?y<2.0, and 0.1?z<2.0, respectively) in terms of molar ratio based on an oxide; coating at least one side of a support with this slurry composition; and heat-treating at 350° C. or higher.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: January 5, 2021
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Yukio Takagi, Kiyohiko Saito, Yasuyuki Banno, Makoto Nagata
  • Publication number: 20190160455
    Abstract: A slurry composition for a catalyst and a method for producing the same, a catalyst and a method for producing the same using the slurry composition for a catalyst. The method omits many heretofore required treatment steps and reduces catalyst production cost. The method comprising the steps of providing a slurry composition for a catalyst, comprising at least an aluminosilicate, Cu, and water, and having a solid concentration of 0.1% by mass to 90% by mass, wherein a component for a catalyst has composition represented by Al2O3.xSiO2.yT2O.zCuO (wherein T is a quaternary ammonium cation, and x, y and z are numbers that satisfy 10?x?40, 0.1?y<2.0, and 0.1?z<2.0, respectively) in terms of molar ratio based on an oxide; coating at least one side of a support with this slurry composition; and heat-treating at 350° C. or higher.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 30, 2019
    Applicant: N.E. CHEMCAT Corporation
    Inventors: Yukio TAKAGI, Kiyohiko SAITO, Yasuyuki BANNO, Makoto NAGATA
  • Patent number: D325547
    Type: Grant
    Filed: October 19, 1990
    Date of Patent: April 21, 1992
    Assignee: Yoshida Kogyo K. K.
    Inventors: Kiyohiko Saito, Yutaka Tominaga