Patents by Inventor Kiyohiro YAMANAKA

Kiyohiro YAMANAKA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959844
    Abstract: There is provided a cool box for use in an automatic analyzer. The cool box has a box body and an air circulator. The box body has a receiving space capable of accommodating therein receptacles for analytes or reagents. The circulator has an intake portion, a fan, and an exhaust portion and operates to circulate air in the receiving space by rotation of the fan. The circulator further includes an inhibitor removing agent retaining portion on which a pouch is set. The pouch contains an analysis inhibitor removing agent for removing components (analysis inhibitor) which adversely affect or inhibit analysis of the analytes.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: April 16, 2024
    Assignee: JEOL Ltd.
    Inventors: Takashi Yaginuma, Kiyohiro Ishikawa, Yusuke Yamanaka
  • Publication number: 20240092073
    Abstract: A method for producing a three-dimensional object includes: forming an adhesive part on a portion of a sheet-shaped print medium by an electrophotographic system using a pressure-induced phase transition resin toner that exhibits adhesion when undergoing phase transition under pressure; and forming a three-dimensional part by folding part of the print medium so that the portion of the print medium that has the adhesive part formed thereon is bonded to a different portion of the print medium.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Applicant: FUJIFILM Business Innovation Corp.
    Inventors: Tomoyo Okubo, Shiori Chonan, Kiyohiro Yamanaka
  • Publication number: 20230407143
    Abstract: A method for producing a composite resin particle dispersion includes: performing polymerization A by polymerizing a styrene compound and a vinyl monomer other than the styrene compound to form a styrene-based resin; performing polymerization B by polymerizing a (meth)acrylic acid ester compound in the presence of the styrene-based resin to form intermediate resin particles containing the styrene-based resin and a (meth)acrylic acid ester-based resin; and performing polymerization C by polymerizing a styrene compound and a vinyl monomer other than the styrene compound in the presence of the intermediate resin particles to form composite resin particles. The mass ratio of the styrene-based resin to the (meth)acrylic acid ester-based resin in the composite resin particles is from 80:20 to 20:80. A difference between the lowest glass transition temperature and the highest glass transition temperature in the composite resin particles is 30° C. or more.
    Type: Application
    Filed: August 31, 2023
    Publication date: December 21, 2023
    Applicant: FUJIFILM Business Innovation Corp.
    Inventors: Sumiaki YAMASAKI, Takahiro ISHIZUKA, Kiyohiro YAMANAKA, Yasunobu KASHIMA, Satoshi INOUE
  • Patent number: 11781044
    Abstract: A method for producing a composite resin particle dispersion includes: performing polymerization A by polymerizing a styrene compound and a vinyl monomer other than the styrene compound to form a styrene-based resin; performing polymerization B by polymerizing a (meth)acrylic acid ester compound in the presence of the styrene-based resin to form intermediate resin particles containing the styrene-based resin and a (meth)acrylic acid ester-based resin; and performing polymerization C by polymerizing a styrene compound and a vinyl monomer other than the styrene compound in the presence of the intermediate resin particles to form composite resin particles. The mass ratio of the styrene-based resin to the (meth)acrylic acid ester-based resin in the composite resin particles is from 80:20 to 20:80. A difference between the lowest glass transition temperature and the highest glass transition temperature in the composite resin particles is 30° C. or more.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: October 10, 2023
    Assignee: FUJIFILM Business Innovation Corp.
    Inventors: Sumiaki Yamasaki, Takahiro Ishizuka, Kiyohiro Yamanaka, Yasunobu Kashima, Satoshi Inoue
  • Publication number: 20230143655
    Abstract: A method for producing resin particles includes drying resin particles in a wet state by passing, without circulating, the resin particles through a drying tube together with a first gas, the resin particles being ones that undergo pressure-induced phase transition. The drying tube has an inlet through which the resin particles are fed into the drying tube, at least one gas blowhole through which a second gas is blown over the resin particles passing through the drying tube, and an outlet through which the resin particles are ejected from the drying tube, and the second gas is blown out of the gas blowhole at a velocity of 50 m/s or more.
    Type: Application
    Filed: July 22, 2022
    Publication date: May 11, 2023
    Applicant: FUJIFILM Business Innovation Corp.
    Inventors: Takahisa TATEKAWA, Kiyohiro YAMANAKA, Shinichi MURASE
  • Publication number: 20230103101
    Abstract: A pressure sensitive toner includes toner particles containing a composite resin that includes a styrene-based resin and a (meth)acrylate-based resin. The difference between a lowest glass transition temperature of the composite resin and a highest glass transition temperature thereof is 30° C. or more, and the toner particles have a gel fraction of from 1.0% by mass to 8.0% by mass inclusive.
    Type: Application
    Filed: July 12, 2022
    Publication date: March 30, 2023
    Applicant: FUJIFILM Business Innovation Corp.
    Inventors: Takeshi IWANAGA, Takako KOBAYASHI, Mieko SEKI, Kiyohiro YAMANAKA, Satoshi KAMIWAKI
  • Publication number: 20220306852
    Abstract: A method for producing a liquid dispersion of composite resin particles includes polymerizing a styrene compound and an extra vinyl monomer together to give a styrene resin; polymerizing a (meth)acrylate compound in the presence of the styrene resin to give intermediate resin particles A, which are resin particles containing the styrene resin and a (meth)acrylate resin; polymerizing a styrene compound and an extra vinyl monomer in the presence of intermediate resin particles A to give liquid dispersion B, which is a liquid dispersion containing intermediate resin particles B; and adding a polymerization initiator to liquid dispersion B to give a liquid dispersion containing composite resin particles. In the composite resin particles as a whole, the ratio by mass between the styrene and (meth)acrylate resins is between 80:20 and 20:80. There is a difference of 30° C. or more between the lowest and highest glass transition temperatures of the composite resin particles.
    Type: Application
    Filed: October 18, 2021
    Publication date: September 29, 2022
    Applicant: FUJIFILM Business Innovation Corp.
    Inventors: Kiyohiro YAMANAKA, Yasunobu KASHIMA, Sumiaki YAMASAKI, Takahiro ISHIZUKA, Satoshi INOUE
  • Publication number: 20220306906
    Abstract: A method for producing a composite resin particle dispersion includes: performing polymerization A by polymerizing a styrene compound and a vinyl monomer other than the styrene compound to form a styrene-based resin; performing polymerization B by polymerizing a (meth)acrylic acid ester compound in the presence of the styrene-based resin to form intermediate resin particles containing the styrene-based resin and a (meth)acrylic acid ester-based resin; and performing polymerization C by polymerizing a styrene compound and a vinyl monomer other than the styrene compound in the presence of the intermediate resin particles to form composite resin particles. The mass ratio of the styrene-based resin to the (meth)acrylic acid ester-based resin in the composite resin particles is from 80:20 to 20:80. A difference between the lowest glass transition temperature and the highest glass transition temperature in the composite resin particles is 30° C. or more.
    Type: Application
    Filed: October 20, 2021
    Publication date: September 29, 2022
    Applicant: FUJIFILM Business Innovation Corp.
    Inventors: Sumiaki Yamasaki, Takahiro Ishizuka, Kiyohiro Yamanaka, Yasunobu Kashima, Satoshi Inoue
  • Publication number: 20220306913
    Abstract: A method for producing pressure-responsive particles includes: adding an aggregating agent to a dispersion containing composite resin particles containing a styrene-based resin including a styrene compound and a vinyl monomer other than the styrene compound as polymer components and a (meth)acrylic acid ester-based resin including a (meth)acrylic acid ester compound as a polymer component to aggregate the composite resin particles so as to form aggregated particles A; forming a shell by adding an aggregating agent and styrene-based resin particles containing a styrene compound and a vinyl monomer other than the styrene compound as polymer components to a dispersion containing the aggregated particles A to aggregate the styrene-based resin particles so as to form aggregated particles B; and heating and fusing the aggregated particles B to form pressure-responsive particles.
    Type: Application
    Filed: October 25, 2021
    Publication date: September 29, 2022
    Applicant: FUJIFILM Business Innovation Corp.
    Inventors: Satoshi Kamiwaki, Sumiaki Yamasaki, Takeshi Iwanaga, Kiyohiro Yamanaka, Satoshi Inoue
  • Publication number: 20220306854
    Abstract: A method for producing a composite resin particle dispersion includes: polymerizing a (meth)acrylic acid ester compound to form a (meth)acrylic acid ester-based resin; and polymerizing a styrene compound and a vinyl monomer other than the styrene compound in the presence of the (meth)acrylic acid ester-based resin to form composite resin particles containing a styrene-based resin and the (meth)acrylic acid ester-based resin. The mass ratio of the styrene-based resin to the (meth)acrylic acid ester-based resin in the composite resin particles is from 80:20 to 20:80. A difference between the lowest glass transition temperature and the highest glass transition temperature in the composite resin particles is 30° C. or more.
    Type: Application
    Filed: October 18, 2021
    Publication date: September 29, 2022
    Applicant: FUJIFILM Business Innovation Corp.
    Inventors: Sumiaki YAMASAKI, Kiyohiro YAMANAKA, Takahiro ISHIZUKA, Yasunobu KASHIMA, Satoshi INOUE
  • Publication number: 20220306905
    Abstract: A pressure sensitive adhesive includes: composite resin particles that contain a styrene resin containing, as polymerization components, styrene and a vinyl monomer other than styrene, and a (meth)acrylate resin containing, as a polymerization component, a (meth)acrylate; and an aqueous solvent containing water, in which a mass ratio of the styrene resin to the (meth)acrylate resin (styrene resin:(meth)acrylate resin) is 80:20 to 20:80, a difference between the lowest glass transition temperature and the highest glass transition temperature of the composite resin particles is 30° C. or more, a melt viscosity of the composite resin particles at 100° C. is 4000 Pa·s or more and 20000 Pa·s or less, and, in a melt viscosity range of the composite resin particles of 4000 Pa·s or more and 20000 Pa·s or less, a slope of a logarithm of the melt viscosity of the composite resin particles relative to a temperature of the composite resin particles is ?0.08 or more and ?0.04 or less.
    Type: Application
    Filed: October 20, 2021
    Publication date: September 29, 2022
    Applicant: FUJIFILM Business Innovation Corp.
    Inventors: Sumiaki YAMASAKI, Kiyohiro Yamanaka, Satoshi Kamiwaki, Takahiro Ishizuka, Yasunobu Kashima, Satoshi Inoue
  • Publication number: 20220308486
    Abstract: A particle set for producing a printed matter includes: a chromatic color toner containing toner particles A; and pressure-responsive particles containing base particles B, in which the base particles B contain a styrene resin containing, as polymerization components, styrene and a vinyl monomer other than styrene, and a (meth)acrylate resin containing, as a polymerization component, a (meth)acrylate, a mass ratio of the styrene resin to the (meth)acrylate resin (styrene resin:(meth)acrylate resin) is 80:20 to 20:80, a difference between the lowest glass transition temperature and the highest glass transition temperature of the pressure-responsive particles is 30° C. or more, and when the toner particles A have a volume average particle diameter D50A and the base particles B have a volume average particle diameter D50B, the D50A and the D50B satisfy formula 1-1: 1.5 ?m<(D50B?D50A).
    Type: Application
    Filed: December 13, 2021
    Publication date: September 29, 2022
    Applicant: FUJIFILM Business Innovation Corp.
    Inventors: Yoshifumi IIDA, Takashi HASEGAWA, Satoshi KAMIWAKI, Takako KOBAYASHI, Satoshi INOUE, Sumiaki YAMASAKI, Mieko SEKI, Kiyohiro YAMANAKA, Takeshi IWANAGA
  • Publication number: 20220308478
    Abstract: A method for producing pressure-responsive particles includes: adding an aggregating agent and a dispersion containing silica particles to a dispersion containing composite resin particles containing a styrene-based resin including a styrene compound and a vinyl monomer other than the styrene compound as polymer components and a (meth)acrylic acid ester-based resin including a (meth)acrylic acid ester compound as a polymer component to cause aggregation so as to form aggregated particles; and heating and fusing the aggregated particles to form pressure-responsive particles. The amount of the silica particles added by the dispersion containing the silica particles is 0.5 mass % or more and 10 mass % or less relative to a total mass of the composite resin particles. The mass ratio of the styrene-based resin to the (meth)acrylic acid ester-based resin in the pressure-responsive particles is from 80:20 to 20:80.
    Type: Application
    Filed: October 21, 2021
    Publication date: September 29, 2022
    Applicant: FUJIFILM Business Innovation Corp.
    Inventors: Kiyohiro YAMANAKA, Satoshi KAMIWAKI, Takeshi IWANAGA, Sumiaki YAMASAKI, Satoshi INOUE
  • Publication number: 20220234326
    Abstract: A pressure sensitive adhesive particle includes a styrene resin that contains, as polymerization components, styrene and a vinyl monomer other than styrene; and a (meth)acrylate resin that contains, as polymerization components, at least two (meth)acrylates that account for 90 mass % or more of all polymerization components of the (meth)acrylate resin, in which the pressure sensitive adhesive particle has a sea phase that contains the styrene resin, and island phases that are dispersed in the sea phase and contain the (meth)acrylate resin, the pressure sensitive adhesive particle has at least two glass transition temperatures, and a difference between the lowest glass transition temperature and the highest glass transition temperature is 30° C. or more, and in a cross section of the pressure sensitive adhesive particle, an area ratio of the island phases is 30% or more and 85% or less.
    Type: Application
    Filed: October 14, 2021
    Publication date: July 28, 2022
    Applicant: FUJIFILM Business Innovation Corp.
    Inventors: Kiyohiro Yamanaka, Sumiaki Yamasaki, Satoshi Kamiwaki
  • Publication number: 20220228036
    Abstract: A pressure sensitive adhesive particle includes a sea-island structure constituted by a sea containing a resin A and islands containing a resin B1 and a resin B2, in which a viscosity of the resin B1 at 100° C. is smaller than a viscosity of the resin B2 at 100° C.
    Type: Application
    Filed: November 8, 2021
    Publication date: July 21, 2022
    Applicant: FUJIFILM Business Innovation Corp
    Inventors: Mieko SEKI, Sumiaki YAMASAKI, Kiyohiro YAMANAKA, Satoshi KAMIWAKI
  • Publication number: 20220227906
    Abstract: Pressure-responsive particles include pressure-responsive base particles and silica particles, in which the pressure-responsive base particles contain a styrene-based resin that contains styrene and other vinyl monomers as polymerization components and a (meth)acrylic acid ester-based resin that contains at least two kinds of (meth)acrylic acid esters as polymerization components and in which a ratio of a mass of the (meth)acrylic acid esters to a total mass of polymerization components is 90% by mass or more, the pressure-responsive particles have at least two glass transition temperatures, a difference between a lowest glass transition temperature and a highest glass transition temperature is 30° C. or higher, and a ratio of a surface coating rate Cs2 by the silica particles after application of the following first stress to a surface coating rate Cs1 by the silica particles before application of stress satisfies a relationship of 0.4?Cs2/Cs1?0.
    Type: Application
    Filed: December 9, 2021
    Publication date: July 21, 2022
    Applicant: FUJIFILM Business Innovation Corp.
    Inventors: Yoshifumi IIDA, Takako KOBAYASHI, Takashi HASEGAWA, Kiyohiro YAMANAKA, Takeshi IWANAGA, Satoshi KAMIWAKI, Mieko SEKI, Sumiaki YAMASAKI
  • Publication number: 20210269272
    Abstract: A method for producing a printed material includes providing pressure-induced phase transition particles to a part of an outside margin portion or a portion to be folded of a recording medium; bonding the pressure-induced phase transition particles to the recording medium; and pressure-bonding a multilayer body in which plural recording media are stacked, the recording media including the recording medium having the pressure-induced phase transition particles bonded thereon.
    Type: Application
    Filed: August 5, 2020
    Publication date: September 2, 2021
    Applicant: FUJIFILM Business Innovation Corp.
    Inventors: Susumu YOSHINO, Yoshifumi IIDA, Satoshi KAMIWAKI, Sakae TAKEUCHI, Satomi KASHIWAGI, Sumiaki YAMASAKI, Takahiro ISHIZUKA, Shigeru SEITOKU, Kiyohiro YAMANAKA
  • Patent number: 11104538
    Abstract: A method for producing a printed material includes providing pressure-induced phase transition particles to a part of an outside margin portion or a portion to be folded of a recording medium; bonding the pressure-induced phase transition particles to the recording medium; and pressure-bonding a multilayer body in which plural recording media are stacked, the recording media including the recording medium having the pressure-induced phase transition particles bonded thereon.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: August 31, 2021
    Assignee: FUJIFILM Business Innovation Corp.
    Inventors: Susumu Yoshino, Yoshifumi Iida, Satoshi Kamiwaki, Sakae Takeuchi, Satomi Kashiwagi, Sumiaki Yamasaki, Takahiro Ishizuka, Shigeru Seitoku, Kiyohiro Yamanaka
  • Publication number: 20200291243
    Abstract: A powder coating material contains an acrylic resin that has a side chain having an alkyl group having 4 or more carbon atoms and a hydroxy group; and a curing agent.
    Type: Application
    Filed: July 23, 2019
    Publication date: September 17, 2020
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Hiroshi SAEGUSA, Kiyohiro YAMANAKA, Hirofumi SHIOZAKI, Yoichiro EMURA
  • Publication number: 20200283640
    Abstract: A coated product includes two or more coated layers, in which a degree of interface roughness Ra between a first layer in the coated film layer and a second layer in contact with the first layer is 1 ?m to 10 ?m.
    Type: Application
    Filed: July 24, 2019
    Publication date: September 10, 2020
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Susumu YOSHINO, Kiyohiro YAMANAKA, Hiroshi SAEGUSA, Yoichiro EMURA, Hirofumi SHIOZAKI, Satoshi YOSHIDA