Patents by Inventor Kiyoshi Takeyama

Kiyoshi Takeyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8071074
    Abstract: Hypersecretion of mucus in the lungs is inhibited by the administration of an epidermal growth factor receptor (EGF-R) antagonist. The EGF-R antagonist may be in the form of a small organic molecule, an antibody, or portion of an antibody that binds to and blocks the EGF receptor. The EGF-R antagonist is preferably administered by injection in an amount sufficient to inhibit formation of goblet cells in pulmonary airways. The degranulation of goblet cells that results in airway mucus production is thereby inhibited. Assays for screening candidate agents that inhibit goblet cell proliferation are also provided.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: December 6, 2011
    Assignee: The Regents of the University of California
    Inventors: Jay A. Nadel, Kiyoshi Takeyama
  • Patent number: 8048844
    Abstract: Hypersecretion of mucus in the lungs is inhibited by the administration of an epidermal growth factor receptor (EGF-R) antagonist. The EGF-R antagonist may be in the form of a small organic molecule, an antibody, or portion of an antibody that binds to and blocks the EGF receptor. The EGF-R antagonist is preferably administered by injection in an amount sufficient to inhibit formation of goblet cells in pulmonary airways. The degranulation of goblet cells that results in airway mucus production is thereby inhibited. Assays for screening candidate agents that inhibit goblet cell proliferation are also provided.
    Type: Grant
    Filed: February 7, 2003
    Date of Patent: November 1, 2011
    Assignee: The Regents of the University of California
    Inventors: Jay A. Nadel, Kiyoshi Takeyama
  • Patent number: 7700547
    Abstract: Hypersecretion of mucus in the lungs is inhibited by the administration of an epidermal growth factor receptor (EGF-R) antagonist. The EGF-R antagonist may be in the form of a small organic molecule, an antibody, or portion of an antibody that binds to and blocks the EGF receptor. The EGF-R antagonist is preferably administered by injection in an amount sufficient to inhibit formation of goblet cells in pulmonary airways. The degranulation of goblet cells that results in airway mucus production is thereby inhibited. Assays for screening candidate agents that inhibit goblet cell proliferation are also provided.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: April 20, 2010
    Assignee: The Regents of the University of California
    Inventors: Jay A. Nadel, Kiyoshi Takeyama
  • Patent number: 7531500
    Abstract: Hypersecretion of mucus in the lungs is inhibited by the administration of an epidermal growth factor receptor (EGF-R) antagonist. The EGF-R antagonist may be in the form of a small organic molecule, an antibody, or portion of an antibody that binds to and blocks the EGF receptor. The EGF-R antagonist is preferably administered by injection in an amount sufficient to inhibit formation of goblet cells in pulmonary airways. The degranulation of goblet cells that results in airway mucus production is thereby inhibited. Assays for screening candidate agents that inhibit goblet cell proliferation are also provided.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: May 12, 2009
    Assignee: The Regents of the University of California
    Inventors: Jay A. Nadel, Kiyoshi Takeyama
  • Publication number: 20080199462
    Abstract: Hypersecretion of mucus in the lungs is inhibited by the administration of an epidermal growth factor receptor (EGF-R) antagonist. The EGF-R antagonist may be in the form of a small organic molecule, an antibody, or portion of an antibody that binds to and blocks the EGF receptor. The EGF-R antagonist is preferably administered by injection in an amount sufficient to inhibit formation of goblet cells in pulmonary airways. The degranulation of goblet cells that results in airway mucus production is thereby inhibited. Assays for screening candidate agents that inhibit goblet cell proliferation are also provided.
    Type: Application
    Filed: January 11, 2008
    Publication date: August 21, 2008
    Applicant: The Regents of the University of California
    Inventors: Jay A. Nadel, Kiyoshi Takeyama
  • Publication number: 20080175797
    Abstract: Hypersecretion of mucus in the lungs is inhibited by the administration of an epidermal growth factor receptor (EGF-R) antagonist. The EGF-R antagonist may be in the form of a small organic molecule, an antibody, or portion of an antibody that binds to and blocks the EGF receptor. The EGF-R antagonist is preferably administered by injection in an amount sufficient to inhibit formation of goblet cells in pulmonary airways. The degranulation of goblet cells that results in airway mucus production is thereby inhibited. Assays for screening candidate agents that inhibit goblet cell proliferation are also provided.
    Type: Application
    Filed: February 27, 2008
    Publication date: July 24, 2008
    Inventors: Jay A. Nadel, Kiyoshi Takeyama
  • Patent number: 7358222
    Abstract: Hypersecretion of mucus in the lungs is inhibited by the administration of an epidermal growth factor receptor (EGF-R) antagonist. The EGF-R antagonist may be in the form of a small organic molecule, an antibody, or portion of an antibody that binds to and blocks the EGF receptor. The EGF-R antagonist is preferably administered by injection in an amount sufficient to inhibit formation of goblet cells in pulmonary airways. The degranulation of goblet cells that results in airway mucus production is thereby inhibited. Assays for screening candidate agents that inhibit goblet cell proliferation are also provided.
    Type: Grant
    Filed: February 7, 2003
    Date of Patent: April 15, 2008
    Assignee: The Regents of the University of California
    Inventors: Jay A. Nadel, Kiyoshi Takeyama
  • Patent number: 7354894
    Abstract: Hypersecretion of mucus in the lungs is inhibited by the administration of an epidermal growth factor receptor (EGF-R) antagonist. The EGF-R antagonist may be in the form of a small organic molecule, an antibody, or portion of an antibody that binds to and blocks the EGF receptor. The EGF-R antagonist is preferably administered by injection in an amount sufficient to inhibit formation of goblet cells in pulmonary airways. The degranulation of goblet cells that results in airway mucus production is thereby inhibited. Assays for screening candidate agents that inhibit goblet cell proliferation are also provided.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: April 8, 2008
    Assignee: The Regents of the University of California
    Inventors: Jay A. Nadel, Kiyoshi Takeyama
  • Publication number: 20070270330
    Abstract: Hypersecretion of mucus in the lungs is inhibited by the administration of an epidermal growth factor receptor (EGF-R) antagonist. The EGF-R antagonist may be in the form of a small organic molecule, an antibody, or portion of an antibody that binds to and blocks the EGF receptor. The ESGF-R antagonist is preferably administered by injection in an amount sufficient to inhibit formation of goblet cells in pulmonary airways. The degranulation of goblet cells that results in airway mucus production is thereby inhibited. Assays for screening candidate agents that inhibit goblet cell proliferation are also provided.
    Type: Application
    Filed: November 28, 2006
    Publication date: November 22, 2007
    Inventors: Jay Nadel, Kiyoshi Takeyama
  • Patent number: 6846799
    Abstract: Hypersecretion of mucus in the lungs is inhibited by the administration of an epidermal growth factor receptor (EGF-R) antagonist. The EGF-R antagonist may be in the form of a small organic molecule, an antibody, or portion of an antibody that binds to and blocks the EGF receptor. The EGF-R antagonist is preferably administered by injection in an amount sufficient to inhibit formation of goblet cells in pulmonary airways. The degranulation of goblet cells that results in airway mucus production is thereby inhibited. Assays for screening candidate agents that inhibit goblet cell proliferation are also provided.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: January 25, 2005
    Assignee: The Regents of the University of California
    Inventors: Jay A. Nadel, Kiyoshi Takeyama
  • Publication number: 20040265302
    Abstract: Hypersecretion of mucus in the lungs is inhibited by the administration of an epidermal growth factor receptor (EGF-R) antagonist. The EGF-R antagonist may be in the form of a small organic molecule, an antibody, or portion of an antibody that binds to and blocks the EGF receptor. The EGF-R antagonist is preferably administered by injection in an amount sufficient to inhibit formation of goblet cells in pulmonary airways. The degranulation of goblet cells that results in airway mucus production is thereby inhibited. Assays for screening candidate agents that inhibit goblet cell proliferation are also provided.
    Type: Application
    Filed: March 31, 2004
    Publication date: December 30, 2004
    Inventors: Jay A. Nadel, Kiyoshi Takeyama
  • Publication number: 20030148990
    Abstract: Hypersecretion of mucus in the lungs is inhibited by the administration of an epidermal growth factor receptor (EGF-R) antagonist. The EGF-R antagonist may be in the form of a small organic molecule, an antibody, or portion of an antibody that binds to and blocks the EGF receptor. The EGF-R antagonist is preferably administered by injection in an amount sufficient to inhibit formation of goblet cells in pulmonary airways. The degranulation of goblet cells that results in airway mucus production is thereby inhibited. Assays for screening candidate agents that inhibit goblet cell proliferation are also provided.
    Type: Application
    Filed: February 7, 2003
    Publication date: August 7, 2003
    Inventors: Jay A. Nadel, Kiyoshi Takeyama
  • Patent number: 6566324
    Abstract: Hypersecretion of mucus in the lungs is inhibited by the administration of an epidermal growth factor receptor (EGF-R) antagonist. The EGF-R antagonist may be in the form of a small organic molecule, an antibody, or portion of an antibody that binds to and blocks the EGF receptor. The EGF-R antagonist is preferably administered by injection in an amount sufficient to inhibit formation of goblet cells in pulmonary airways. The degranulation of goblet cells that results in airway mucus production is thereby inhibited. Assays for screening candidate agents that inhibit goblet cell proliferation are also provided.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: May 20, 2003
    Assignee: The Regents of the University of California
    Inventors: Jay A. Nadel, Kiyoshi Takeyama
  • Patent number: 6551989
    Abstract: Hypersecretion of mucus in the lungs is inhibited by the administration of an epidermal growth factor receptor (EGF-R) antagonist. The EGF-R antagonist may be in the form of a small organic molecule, an antibody, or portion of an antibody that binds to and blocks the EGF receptor. The EGF-R antagonist is preferably administered by injection in an amount sufficient to inhibit formation of goblet cells in pulmonary airways. The degranulation of goblet cells that results in airway mucus production is thereby inhibited. Assays for screening candidate agents that inhibit goblet cell proliferation are also provided.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: April 22, 2003
    Assignee: The Regents of the University of California
    Inventors: Jay A. Nadel, Kiyoshi Takeyama
  • Publication number: 20010041178
    Abstract: Hypersecretion of mucus in the lungs is inhibited by the administration of an epidermal growth factor receptor (EGF-R) antagonist. The EGF-R antagonist may be in the form of a small organic molecule, an antibody, or portion of an antibody that binds to and blocks the EGF receptor. The EGF-R antagonist is preferably administered by injection in an amount sufficient to inhibit formation of goblet cells in pulmonary airways. The degranulation of goblet cells that results in airway mucus production is thereby inhibited. Assays for screening candidate agents that inhibit goblet cell proliferation are also provided.
    Type: Application
    Filed: February 26, 2001
    Publication date: November 15, 2001
    Inventors: Jay A. Nadel, Kiyoshi Takeyama
  • Publication number: 20010036919
    Abstract: Hypersecretion of mucus in the lungs is inhibited by the administration of an epidermal growth factor receptor (EGF-R) antagonist. The EGF-R antagonist may be in the form of a small organic molecule, an antibody, or portion of an antibody that binds to and blocks the EGF receptor. The EGF-R antagonist is preferably administered by injection in an amount sufficient to inhibit formation of goblet cells in pulmonary airways. The degranulation of goblet cells that results in airway mucus production is thereby inhibited. Assays for screening candidate agents that inhibit goblet cell proliferation are also provided.
    Type: Application
    Filed: May 24, 2001
    Publication date: November 1, 2001
    Inventors: Jay A. Nadel, Kiyoshi Takeyama
  • Patent number: 6270747
    Abstract: Hypersecretion of mucus in the lungs is inhibited by the administration of an epidermal growth factor receptor (EGF-R) antagonist. The EGF-R antagonist may be in the form of a small organic molecule, an antibody, or portion of an antibody that binds to and blocks the EGF receptor. The EGF-R antagonist is preferably administered by injection in an amount sufficient to inhibit formation of goblet cells in pulmonary airways. The degranulation of goblet cells that results in airway mucus production is thereby inhibited. Assays for screening candidate agents that inhibit goblet cell proliferation are also provided.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: August 7, 2001
    Assignee: The University of California
    Inventors: Jay A. Nadel, Kiyoshi Takeyama