Patents by Inventor Kiyoshi Tsuru

Kiyoshi Tsuru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5792286
    Abstract: A high-strength thin plate, such as for IC lead frames, of an iron-nickel-cobalt alloy which is able to withstand repeated bending and is corrosion resistance and etchable, the alloy containing 27 to 30 wt. % N:, 5 to 18 wt. % Co, 0.10 to 3.0 wt. % Mn, 0.10 wt. % or less Si, 0.010 to 0.075 wt. % C, 0.001 to 0.014 wt. % N, less than 2.0 ppm H, 0.0040 wt. % or less S, 0.004 wt. % or less P, 0.0050 wt. % or less O, 0.01 to 0.06 wt. % Cr, 0.01 to 1.0 wt. % Mo and the balance being Fe and unavoidable impurities wherein 63.5 wt. %.ltoreq.2Ni+Co+Mn.ltoreq.65 wt. % for Co<10 wt. % and 69.5 wt. %.ltoreq.2Ni+Co+Mn.ltoreq.74.5 wt. % for Co>10 wt. %.
    Type: Grant
    Filed: March 20, 1995
    Date of Patent: August 11, 1998
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Naotsugu Yamanouchi, Tomoyoshi Okita
  • Patent number: 5669989
    Abstract: A Ni--Fe magnetic alloy consists essentially of: 77 to 80 wt. % Ni, 3.5 to 5 wt. % Mo, 1.5 to 3 wt. % Cu, 0.1 to 1.1 wt. % Mn, 0.1 wt. % or less Cr, 0.003 wt. % or less S, 0.01 wt. % or less P, 0.005 wt. % or less 0, 0.003 wt. % or less N, 0.02 wt. % or less C, 0.001 to 0.05 wt. % Al, 1 wt. % or less Si, 2.6-6 of the weight ratio of Ca to S, (Ca/S), and the balance being Fe and inevitable impurities, satisfies an equation of 3.2.ltoreq.(2.02.times.?Ni!-11.13.times.?Mo!-1.25.times.?Cu!-5.03.times.?M n!)/(2.13.times.?Fe!).ltoreq.3.8; and has a Mo segregation ratio defined by a seregration equation satisfying 5% or less, the seregration equation being .vertline.(Mo content in a segregation region-Mo average content)/(Mo average content).vertline..times.100%. A method for producing a magnetic Ni--Fe alloy comprises the steps of: a first heating step of heating an alloy ingot to 1200.degree. to 1300.degree. C. for 10 to 30 hrs; slabbing the heated ingot at a finishing temperature of 950.degree. C.
    Type: Grant
    Filed: October 19, 1995
    Date of Patent: September 23, 1997
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Shinichi Okimoto, Naokazu Yamamura, Tetsuo Yamamoto, Hirohisa Haiji
  • Patent number: 5637161
    Abstract: A method for manufacturing an alloy sheet for a shadow mask is provided which includes: (i) annealing a hot-rolled sheet containing Fe and Ni at a temperature of 910.degree. to 990.degree. C.; (ii) cold-rolling the annealed hot-rolled sheet from step (i) to produce a cold-rolled sheet; (iii) crystallization annealing of the cold-rolled sheet from step (ii); (iv) cold-rolling the annealed cold rolled sheet from step (iii); (v) finish recrystallization annealing step of the cold-rolled sheet of step (iv); (vi) finish cold-rolling of the sheet from step (v) at a cold-rolling reduction ratio R (%) satisfying the following equations: 16.ltoreq.R.ltoreq.75 and 6.38 D-133.9.ltoreq.R.ltoreq.6.38 D-51.0 wherein D is the average austenite grain size in .mu.m; (vii) softening annealing the sheet from step (vi) at a temperature of 720.degree. to 790.degree. C. for 2 to 40 minutes before press-forming and at conditions of temperature T in .degree.C. and time t in minutes which satisfy the following equation :T.gtoreq.-53.
    Type: Grant
    Filed: April 25, 1995
    Date of Patent: June 10, 1997
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Michihito Hiasa, Tomoyoshi Okita
  • Patent number: 5628841
    Abstract: A thin Fe--Ni alloy sheet for shadow mask consists essentially of Ni of 34 to 38 wt. %, Si of 0.05 wt. % or less, B of 0.0005 wt. % or less, O of 0.002 wt. % or less and N of 0.0015% or less, the balance being Fe and inevitable impurities; said alloy sheet after annealing before press-forming having 0.2% proof stress of 28.5 kgf/mm.sup.2 or less; and a degree of {211} plane on a surface of said alloy sheet being 16% or less. And further modified similar alloy sheets are also provided.Further, a method for producing a thin Fe--Ni alloy sheet for shadow mask comprises the steps of: (a) hot-rolling of a slab into a hot-rolled alloy strip; (b) hot-rolled sheet annealing of the hot-rolled strip at 910 to 990.degree. C.; (c) cold-rolling of the annealed hot-rolled strip into a cold-rolled strip; (d) recrystallization annealing of the cold-rolled strip; (e) finish cold-rolling of the recrystallization annealed strip at a finish cold reduction ratio in response to austenite grain size D(D.mu.
    Type: Grant
    Filed: January 21, 1994
    Date of Patent: May 13, 1997
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Tomoyoshi Okita, Michihito Hiasa
  • Patent number: 5620535
    Abstract: An alloy sheet for making a shadow mask consists essentially of 34 to 38 wt. % Ni, 0.07 wt. % or less Si, 0.002 wt. % or less B, 0.002 wt. % or less O, less than 0.002 wt. % N and the balance being Fe and inevitable impurities;said alloy sheet after annealing before press-forming having 0.2% proof stress of 28 kgf/mm.sup.2 or less; anda gathering degree of {211} plane being 16% or less.A method for manufacturing an alloy sheet comprises:a finish cold-rolling step of cold-rolling the cold-rolled sheet at a cold-rolling reduction ratio in response to an average austenite grain size D (.mu.m), the reduction ratio of final cold-rolling R (%) satisfying the equations below;16.ltoreq.R.ltoreq.75,6.38D-133.9.ltoreq.R.ltoreq.6.38D-51.0a softening annealing step of annealing said cold rolled sheet in a temperature range of 720.degree. to 790.degree. C. for 2 to 40 min. before press-forming and on conditions satisfying the equation below;T.gtoreq.-53.8 log t+806,where T(.degree. C.) is the temperature and t (min.
    Type: Grant
    Filed: December 1, 1993
    Date of Patent: April 15, 1997
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Michihito Hiasa, Tomoyoshi Okita
  • Patent number: 5605582
    Abstract: An alloy sheet having a pierced hole face and providing a desirable etching performance, comprising {331}, {210}, and {211} planes on the surface; the gathering degree of the {311} plane being 14% or less, the gathering degree of the {210} plane being 14% or less, and the gathering degree of the {211} plane being 14% or less; and the ratio of the gathering degrees expressed by the equation {210}/({331}+{211}) being 0.2 to 1. An alloy sheet having a pierced hole face providing a desirable etching performance, comprising planes of {111}, {100}, {110}, {311}, {331}, {210} and {211}; the gathering degree of the {111} plane, S.sub.1, being 1 to 10%, the gathering degree of the {100} plane, S.sub.2, being 50 to 94%, the gathering degree of the {110} plane, S.sub.3, being 1 to 24%, the gathering degree of the {311} plane, S.sub.4, being 1 to 14%, the gathering degree of the {331} plane, S.sub.5, being 1 to 14%, the gathering degree of the {210} plane, S.sub.
    Type: Grant
    Filed: November 17, 1993
    Date of Patent: February 25, 1997
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Hidekazu Yoshizawa, Kiyoshi Tsuru, Yoshiaki Shimizu, Tomoyoshi Okita
  • Patent number: 5605581
    Abstract: A thin Fe--Ni alloy sheet for shadow mask consists essentially of Ni of 34 to 38 wt. %, Si of 0.05 wt. % or less, B of 0.0005 wt. % or less, O of 0.002 wt. % or less and N of 0.0015 % or less, the balance being Fe and inevitable impurities; said alloy sheet after annealing before press-forming having 0.2% proof stress of 28.5 kgf/mm.sup.2 or less; and a degree of {211} plane on a surface of said alloy sheet being 16% or less. And further modified similar alloy sheets are also provided.Further, a method for producing a thin Fe--Ni alloy sheet for shadow mask comprises the steps of: (a) hot-rolling of a slab into a hot-rolled alloy strip; (b) hot-rolled sheet annealing of the hot-rolled strip at 910.degree. to 990.degree. C.; (c) cold-rolling of the annealed hot-rolled strip into a cold-rolled strip; (d) recrystallization annealing of the cold-rolled strip; (e) finish cold-rolling of the recrystallization annealed strip at a finish cold reduction ratio in response to austenite grain size D(D.mu.
    Type: Grant
    Filed: January 21, 1994
    Date of Patent: February 25, 1997
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Tomoyoshi Okita, Michihito Hiasa
  • Patent number: 5562783
    Abstract: An alloy sheet for making a shadow mask consists essentially of 34 to 38 wt. % Ni, 0.07 wt. % or less Si, 0.001 wt. % or less B, 0.003 wt. % or less O, 0.002 wt. % or less N, and the balance being Fe and inevitable impurities.The alloy sheet has an average austenite grain size (Dav) of 10.5 to 15.0 .mu.m, a ratio of a maximum size to the minimum size of austenite grains (Dmax/Dmin) of 1 to 15, a Vickers hardness (Hv) of 165 to 220 and satisfying a relation of10.times.Dav+80.gtoreq.Hv.gtoreq.10.times.Dav+50;and gathering degree of crystal planes on said alloy sheet surface of14% or less for {111} plane,5 to 75% for {100} plane,5 to 40% for {110} plane,20% or less for {311} plane,20% or less for {331} plane,20% or less for {210} plane, and20% or less for {211} plane.
    Type: Grant
    Filed: January 6, 1994
    Date of Patent: October 8, 1996
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Michihito Hiasa, Tomoyoshi Okita
  • Patent number: 5525164
    Abstract: A Ni--Fe magnetic alloy consists essentially of:77 to 80 wt. % Ni, 3.5 to 5 wt. % Mo, 1.5 to 3 wt. % Cu, 0.1 to 1.1 wt. % Mn, 0.1 wt. % or less Cr, 0.003 wt. % or less S, 0.01 wt. % or less P, 0.005 wt. % or less O, 0.003 wt. % or less N, 0.02 wt. % or less C, 0.001 to 0.05 wt. % Al, 1 wt. % or less Si, 2.6-6 of the weight ratio of Ca to S, (Ca/S), and the balance being Fe and inevitable impurities, satisfies an equation of 3.2.ltoreq.(2.02.times.[Ni]-11.13.times.[Mo]-1.25.times.[Cu]-5.03.times.[M n])/(2.13.times.[Fe]).ltoreq.3.8; and has a Mo segregation ratio defined by a seregration equation satisfying 5% or less, the seregration equation being .vertline.(Mo content in a segregation region-Mo average content)/(Mo average content).vertline..times.100%.A method for producing a magnetic Ni--Fe alloy comprises the steps of: a first heating step of heating an alloy ingot to 1200.degree. to 1300.degree. C. for 10 to 30 hrs; slabbing the heated ingot at a finishing temperature of 950.degree. C.
    Type: Grant
    Filed: March 8, 1995
    Date of Patent: June 11, 1996
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Shinichi Okimoto, Naokazu Yamamura, Tetsuo Yamamoto, Hirohisa Haiji
  • Patent number: 5522953
    Abstract: A method for manufacturing an alloy sheet comprising the steps of: (a) hot-rolling a slab containing Fe, Ni and Cr into a hot-rolled strip; (b) annealing the hot-rolled strip at a temperature of 810.degree. to 890.degree. C.; (c) cold-rolling the annealed hot-rolled strip at a reduction ratio of 81 to 94% into a cold-rolled sheet; (d) recrystallization annealing of the cold-rolled sheet; (e) finish cold-rolling the cold-rolled sheet subjected to the recrystallization annealing at a reduction ratio of 14 to 29%; (f) stress relief annealing of the cold-rolled sheet subjected to the finish cold-rolling; and (g) annealing, before press-forming. The cold-rolled sheet subjected to the stress relief annealing at a temperature of 740.degree. to 900.degree. C. for 2 to 40 minutes and satisfying the following equation: T.ltoreq.-123 logt+937, where T is a temperature (.degree.C.) and t is a time (minutes) for the annealing.
    Type: Grant
    Filed: March 3, 1995
    Date of Patent: June 4, 1996
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Tomoyoshi Okita, Michihito Hiasa
  • Patent number: 5520755
    Abstract: A thin Fe--Ni alloy sheet for shadow mask consists essentially of Ni of 34 to 38 wt. %, Si of 0.05 wt. % or less, B of 0.0005 wt. % or less, O of 0.002 wt. % or less and N of 0.0015% or less, the balance being Fe and inevitable impurities; said alloy sheet after annealing before press-forming having 0.2% proof stress of 28.5 kgf/mm.sup.2 or less; and a degree of {211} plane on a surface of said alloy sheet being 16% or less. And further modified similar alloy sheets are also provided.Further, a method for producing a thin Fe--Ni alloy sheet for shadow mask comprises the steps of: (a) hot-rolling of a slab into a hot-rolled alloy strip; (b) hot-rolled sheet annealing of the hot-rolled strip at 910.degree. to 990.degree. C.; (c) cold-rolling of the annealed hot-rolled strip into a cold-rolled strip; (d) recrystallization annealing of the cold-rolled strip; (e) finish cold-rolling of the recrystallization annealed strip at a finish cold reduction ratio in response to austenite grain size D(D.mu.
    Type: Grant
    Filed: November 18, 1994
    Date of Patent: May 28, 1996
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Tomoyoshi Okita, Michihito Hiasa
  • Patent number: 5503693
    Abstract: A thin Fe--Ni alloy sheet for shadow mask consists essentially of Ni of 34 to 38 wt. %, Si of 0.05 wt. % or less, B of 0.0005 wt. % or less, O of 0.002 wt. % or less and N of 0.0015% or less, the balance being Fe and inevitable impurities; said alloy sheet after annealing before press-forming having 0.2% proof stress of 28.5 kgf/mm or less; and a degree of {211 } plane on a surface of said alloy sheet being 16% or less. And further modified similar alloy sheets are also provided.Further, a method for producing a thin Fe--Ni alloy sheet for shadow mask comprises the steps of: (a) hot-rolling of a slab into a hot-rolled alloy strip; (b) hot-rolled sheet annealing of the hot-rolled strip at 910.degree. to 990.degree. C.; (c) cold-rolling of the annealed hot-rolled strip into a cold-rolled strip; (d) recrystallization annealing of the cold-rolled strip; (e) finish cold-rolling of the recrystallization annealed strip at a finish cold reduction ratio in response to austenite grain size D(D .mu.
    Type: Grant
    Filed: November 18, 1994
    Date of Patent: April 2, 1996
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Tomoyoshi Okita, Michihito Hiasa
  • Patent number: 5501749
    Abstract: A thin Fe--Ni alloy sheet for shadow mask consists essentially of Ni of 34 to 38 wt. %, Si of 0.05 wt. % or less, B of 0.0005 wt. % or less, O of 0.002 wt. % or less and N of 0.0015% or less, the balance being Fe and inevitable impurities; said alloy sheet after annealing before press-forming having 0.2% proof stress of 28.5 kgf/mm.sup.2 or less; and a degree of {211} plane on a surface of said alloy sheet being 16% or less. And further modified similar alloy sheets are also provided.Further, a method for producing a thin Fe--Ni alloy sheet for shadow mask comprises the steps of: (a) hot-rolling of a slab into a hot-rolled alloy strip; (b) hot-rolled sheet annealing of the hot-rolled strip at 910.degree. to 990.degree. C.; (c) cold-rolling of the annealed hot-rolled strip into a cold-rolled strip; (d) recrystallization annealing of the cold-rolled strip; (e) finish cold-rolling of the recrystallization annealed strip at a finish cold reduction ratio in response to austenite grain size D(D .mu.
    Type: Grant
    Filed: November 18, 1994
    Date of Patent: March 26, 1996
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Tomoyoshi Okita, Michihito Hiasa
  • Patent number: 5500057
    Abstract: A Ni-Fe magnetic alloy consists essentially of:77 to 80 wt. % Ni, 3.5 to 5 wt. % Mo, 1.5 to 3 wt. % Cu, 0.1 to 1.1 wt. % Mn, 0.1 wt. % or less Cr, 0.003 wt. % or less S, 0.01 wt. % or less P, 0.005 wt. % or less 0, 0.003 wt. % or less N, 0.02 wt. % or less C, 0.001 to 0.05 wt. % Al, 1 wt. % or less Si, 2.6-6 of the weight ratio of Ca to S, (Ca/S), and the balance being Fe and inevitable impurities, satisfies an equation of 3.2.ltoreq.(2.02.times.[Ni]-11.13.times.[Mo]-1.25.times.[Cu]-5.03.times.[M n])/ (2.13.times.[Fe]).ltoreq.3.8; and has a Mo segregation ratio defined by a seregration equation satisfying 5% or less, the seregration equation being .vertline.(Mo content in a segregation region-Mo average content)/ (Mo average content).vertline..times.100%.A method for producing a magnetic Ni-Fe alloy comprises the steps of: a first heating step of heating an alloy ingot to 1200.degree. to 1300.degree. C. for 10 to 30 hrs; slabbing the heated ingot at a finishing temperature of 950.degree. C.
    Type: Grant
    Filed: October 1, 1993
    Date of Patent: March 19, 1996
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Shinichi Okimoto, Naokazu Yamamura, Tetsuo Yamamoto, Hirohisa Haiji
  • Patent number: 5456771
    Abstract: A thin Fe-Ni alloy sheet for shadow mask consists essentially of Ni of 34 to 38 wt. %, Si of 0.05 wt. % or less, B of 0.0005 wt. % or less, 0 of 0.002 wt. % or less and N of 0.0015% or less, the balance being Fe and inevitable impurities; said alloy sheet after annealing before press-forming having 0.2% proof stress of 28.5 kgf/mm.sup.2 or less; and a degree of {211} plane on a surface of said alloy sheet being 16% or less. And further modified similar alloy sheets are also provided.Further, a method for producing a thin Fe-Ni alloy sheet for shadow mask comprises the steps of: (a) hot-rolling of a slab into a hot-rolled alloy strip; (b) hot-rolled sheet annealing of the hot-rolled strip at 910.degree. to 990.degree. C.; (c) cold-rolling of the annealed hot-rolled strip into a cold-rolled strip; (d) recrystallization annealing of the cold-rolled strip; (e) finish cold-rolling of the recrystallization annealed strip at a finish cold reduction ratio in response to austenite grain size D(D .mu.
    Type: Grant
    Filed: January 22, 1993
    Date of Patent: October 10, 1995
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Tomoyoshi Okita, Michihito Hiasa
  • Patent number: 5453138
    Abstract: An alloy sheet containing Fe, Ni and Cr has an average austenite grain size of 15 to 45 .mu.m and a degree of mixed grain for austenite grain size of 4.5 to 50%; the alloy sheet has a gathering degree of the {331} plane on a surface of the alloy sheet of 8 to 35%, a gathering degree of the {210} plane of 1 to 20% and a gathering degree of the {211} plane of 2 to 20%; the degree of mixed grain is expressed by the equation: (.vertline.0.5 Dmax-D.vertline./D).times.100 (%), where D is an average austenite grain size, and Dmax is a maximum austenite grain size in said alloy sheet.
    Type: Grant
    Filed: January 18, 1994
    Date of Patent: September 26, 1995
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Tomoyoshi Okita, Michihito Hiasa
  • Patent number: 5308723
    Abstract: The metallic sheet for shadow mask comprises a Fe-Ni alloy sheet having mainly of Fe and Ni; degrees of planes on a surface of the alloy sheet, the degree of {331} plane being 14% or less, the degree of {210} plane 10% or less and the degree of {211} plane 10% or less; and a ratio of degrees of planes which is {210}/[{331}+{211}] being 0.2 to 1.Another thin metallic sheet for shadow mask comprises a Fe-Ni alloy sheet having mainly of Fe and Ni; degrees of planes on a surface of the alloy sheet, that of {111} plane being 5% or less, that of {100} plane 50 to 93%, that of {110} 24% or less, that of {311} plane 1 to 10%, that of {331} 1 to 14%, that of {210} plane 1 to 10% and that of {211} plane 1 to 10%; a ratio of degrees of planes which is [{100}+{311}+{210}]/[{110}+{111}+{331}+{211}] being 0.8 to 20.
    Type: Grant
    Filed: January 21, 1993
    Date of Patent: May 3, 1994
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Hidekazu Yoshizawa, Kiyoshi Tsuru, Tomoyoshi Okita, Yoshiaki Shimizu
  • Patent number: 5032365
    Abstract: A reaction tube of a reaction apparatus includes a circular cylindrical inner tube and an intermediate tube disposed concentrically with the inner tube. A catalyst used in reforming reactions is charged in the gap between the inner and the intermediate tubes. The inner tube accommodates filler particles and is provided with a hollow member disposed therein in contact with the filler particles and capable of absorbing stress resulting from thermal expansion of the filler particles. By virtue of the provision of the hollow member which absorbs thermal stress of the filler particles that are caused to undergo thermal expansion by a high-temperature gas, such as a combustion gas, flowing through the inside of the inner tube, the apparatus is capable of preventing any deformation or breakage of the inner tube.
    Type: Grant
    Filed: April 6, 1989
    Date of Patent: July 16, 1991
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Atsushi Aono, Rooku Fujimoto, Nobuyuki Itoh, Tatsuya Ikeda, Kiyoshi Tsuru