Patents by Inventor Klaas Jacob Lulofs

Klaas Jacob Lulofs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11936201
    Abstract: A wireless power transmitter (101) an output circuit (203, 103) comprises a transmitter coil (103) for which generates the power transfer signal a drive signal generated by a driver circuit (201) is applied. A power loop controller (209) implements a power control loop for controlling the drive signal to adjust a power level of the power transfer signal in response to power control error messages received from the power receiver (105). A mode store (213) stores a plurality of power level modes for the power receiver where each power level mode is associated with a reference power level for the power transfer signal. A mode circuit (211) adapts the drive signal to set the power level of the power transfer signal to a first reference value in response to receiving a mode request message where the first reference value corresponds to a reference power level for a first power level mode indicated in the mode request message.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: March 19, 2024
    Assignee: Koninklijke Philips N.V.
    Inventors: Johannes Wilhelmus Draak, Klaas Jacob Lulofs, Pascal Leonard Maria Theodoor Lebens, Andries van Wageningen
  • Patent number: 11936208
    Abstract: A power transmitter (101) comprises a driver (201) generating a drive signal for a transmitter coil to generate a power transfer signal during a power transfer time interval and an electromagnetic test signal during a foreign object detection time interval. A set of balanced detection coils (207, 209) comprise two detection coils arranged such that signals induced in the two detection coils by an electromagnetic field generated by the transmitter coil compensate each other. A foreign object detector (205) is coupled to the detection coils and performs foreign object detection during the foreign object detection time interval. The foreign object detector (205) is arranged to detect a foreign object in response to a property of a signal from the detection coils meeting a foreign object detection criterion.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: March 19, 2024
    Assignee: Koninklijke Philips N.V.
    Inventors: Wilhelmus Gerardus Maria Ettes, Klaas Jacob Lulofs, Pascal Leonard Maria Theodoor Lebens, Friso Rietstra
  • Patent number: 11735957
    Abstract: A battery includes a first electronic circuit configured to operate in a transfer mode to wirelessly transfer power to a device and to operate in a receive mode to wirelessly receive power from the device. The first electronic circuit also configured to adapt a voltage gain of the first electronic circuit to compensate for a voltage drop between the battery and the device during any one or more of the wireless transfer of power to the device when the battery is operating in the transfer mode and the wireless receipt of power from the device when the battery is operating in the receive mode.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: August 22, 2023
    Assignee: Koninklijke Philips N.V.
    Inventors: Martijn Gerarda Lambertus Justinus Van Uden, Klaas Jacob Lulofs, Roelf Van Der Wal
  • Publication number: 20230043246
    Abstract: A power transmitter (101) comprises a driver (201) generating a drive signal for a transmitter coil to generate a power transfer signal during a power transfer time interval and an electromagnetic test signal during a foreign object detection time interval. A set of balanced detection coils (207, 209) comprise two detection coils arranged such that signals induced in the two detection coils by an electromagnetic field generated by the transmitter coil compensate each other. A foreign object detector (205) is coupled to the detection coils and performs foreign object detection during the foreign object detection time interval. The foreign object detector (205) is arranged to detect a foreign object in response to a property of a signal from the detection coils meeting a foreign object detection criterion.
    Type: Application
    Filed: December 3, 2020
    Publication date: February 9, 2023
    Inventors: Wilhelmus Gerardus Maria ETTES, Klaas Jacob LULOFS, Pascal Leonard Maria Theodoor LEBENS, Friso RIETSTRA
  • Publication number: 20220337093
    Abstract: A wireless power transmitter (101) an output circuit (203, 103) comprises a transmitter coil (103) for which generates the power transfer signal a drive signal generated by a driver circuit (201) is applied. A power loop controller (209) implements a power control loop for controlling the drive signal to adjust a power level of the power transfer signal in response to power control error messages received from the power receiver (105). A mode store (213) stores a plurality of power level modes for the power receiver where each power level mode is associated with a reference power level for the power transfer signal. A mode circuit (211) adapts the drive signal to set the power level of the power transfer signal to a first reference value in response to receiving a mode request message where the first reference value corresponds to a reference power level for a first power level mode indicated in the mode request message.
    Type: Application
    Filed: September 4, 2020
    Publication date: October 20, 2022
    Inventors: Johannes Wilhelmus DRAAK, Klaas Jacob LULOFS, Pascal Leonard Maria Theodoor LEBENS, Andries van Wageningen
  • Patent number: 11451094
    Abstract: A wireless power transfer system includes a power transmitter (201) arranged to provide a power transfer to a power receiver (205) via a power transfer signal. The power receiver (205) comprises a first mode controller (709) for transmitting a standby mode exit request to the power transmitter (201) by changing a loading of a communication inductor (209) of the power transmitter (201). The power transmitter (201) comprises a mode controller (405) which controls the power transmitter (201) to operate in a standby mode wherein a presence of the power receiver (205) is detected but no power transfer signal is generated. It furthermore comprises a detector (403) for detecting an impedance change of the communication inductor (209). The mode controller (405) is arranged to initiate a transition from the standby mode to a power transfer mode in response to the detector (403) detecting the impedance change.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: September 20, 2022
    Assignee: Koninkliljke Philips N.V.
    Inventors: Neil Francis Joye, Andries Van Wageningen, Simon George Abernethy, Klaas Jacob Lulofs
  • Patent number: 11398753
    Abstract: A device being a power receiver or power transmitter of a wireless power transfer system transfer powers via a power transfer signal: The device comprises power transfer coil (103, 107) for receiving or generating the power transfer signal and a communication antenna (207, 307) for communicating with the power receiver (105) or the power transmitter (101) via a communication signal. The communication antenna (207, 307) overlaps the power transfer coil (103, 107). A magnetic shielding element (503, 505) is positioned between the power transfer coil (103, 107) and the communication antenna (207, 307). A controller (201, 301) controls the device to perform power transfer during power transfer intervals and communication during communication time intervals, the power transfer intervals and communication time intervals being disjoint.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: July 26, 2022
    Assignee: Koninklijke Philips N.V.
    Inventors: Johannes Wilhelmus Draak, Klaas Jacob Lulofs
  • Publication number: 20210320535
    Abstract: A device being a power receiver or power transmitter of a wireless power transfer system transfer powers via a power transfer signal: The device comprises power transfer coil (103, 107) for receiving or generating the power transfer signal and a communication antenna (207, 307) for communicating with the power receiver (105) or the power transmitter (101) via a communication signal. The communication antenna (207, 307) overlaps the power transfer coil (103, 107). A magnetic shielding element (503, 505) is positioned between the power transfer coil (103, 107) and the communication antenna (207, 307). A controller (201, 301) controls the device to perform power transfer during power transfer intervals and communication during communication time intervals, the power transfer intervals and communication time intervals being disjoint.
    Type: Application
    Filed: August 5, 2019
    Publication date: October 14, 2021
    Inventors: JOHANNES WILHELMUS DRAAK, KLAAS JACOB LULOFS
  • Publication number: 20210249888
    Abstract: There is provided a battery (100). The battery (100) comprises a first electronic circuit (102) configured to operate in a transfer mode to wirelessly transfer power to a device and to operate in a receive mode to wirelessly receive power from the device. The first electronic circuit (102) is also configured to adapt a voltage gain of the first electronic circuit (102) to compensate for a voltage drop between the battery (100) and the device during any one or more of the wireless transfer of power to the device when the battery (100) is operating in the transfer mode and the wireless receipt of power from the device when the battery (100) is operating in the receive mode.
    Type: Application
    Filed: June 26, 2019
    Publication date: August 12, 2021
    Inventors: Martijn Gerarda Lambertus Justinus VAN UDEN, Klaas Jacob LULOFS, Roelf VAN DER WAL
  • Publication number: 20200343773
    Abstract: A wireless power transfer system includes a power transmitter (201) arranged to provide a power transfer to a power receiver (205) via a power transfer signal. The power receiver (205) comprises a first mode controller (709) for transmitting a standby mode exit request to the power transmitter (201) by changing a loading of a communication inductor (209) of the power transmitter (201). The power transmitter (201) comprises a mode controller (405) which controls the power transmitter (201) to operate in a standby mode wherein a presence of the power receiver (205) is detected but no power transfer signal is generated. It furthermore comprises a detector (403) for detecting an impedance change of the communication inductor (209). The mode controller (405) is arranged to initiate a transition from the standby mode to a power transfer mode in response to the detector (403) detecting the impedance change.
    Type: Application
    Filed: July 7, 2020
    Publication date: October 29, 2020
    Inventors: Neil Francis JOYE, Andries VAN WAGENINGEN, Simon George ABERNETHY, Klaas Jacob LULOFS
  • Patent number: 10734843
    Abstract: A wireless power transfer system includes a power transmitter configured to provide a power transfer to a power receiver via a power transfer signal. The power receiver includes a first mode controller configured to transmit a standby mode exit request to the power transmitter by changing a loading of a communication inductor of the power transmitter. The power transmitter includes a mode controller configured to control the power transmitter to operate in a standby mode where a presence of the power receiver is detected but no power transfer signal is generated. A detector is configured to detect an impedance change of the communication inductor. The mode controller is configured to initiate a transition from the standby mode to a power transfer mode in response to the detector detecting the impedance change.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: August 4, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Neil Francis Joye, Andries Van Wageningen, Simon George Abernethy, Klaas Jacob Lulofs
  • Patent number: 10707698
    Abstract: A power transmitter (101) for inductively transferring power to a power receiver (105) comprises a resonance circuit (201) comprising a transmitter coil (103) for generating a power transfer signal. A sampler (511) samples a current through, or voltage over, the transmitter coil (103). A message receiver (509) receives messages load modulated onto the power transfer signal based on the samples. A driver (203) generates a drive signal for the resonance circuit (201) and a resonance modification circuit (505) reduces the resonance frequency of the resonance circuit (201) by slowing a state change for a resonating component of the resonance circuit (201) for a fractional time interval of the cycles of the drive signal. A sample time controller (513) controls the sample times in response to at least one of start-times and end-times of the fractional time intervals, and specifically may set the sample times to be within the fractional time intervals.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: July 7, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Neil Francis Joye, Klaas Jacob Lulofs
  • Patent number: 10693323
    Abstract: A power transmitter (101) inductively transferring power to a power receiver (105) comprises a resonance circuit (201) comprising a transmitter coil (103). A driver (203) generates a drive signal for the resonance circuit (201) and a data receiver (513) receives messages load modulated onto a power transfer signal by the power receiver (105) during communication time intervals. An error unit (507) determines a coil current error and a control loop (511) controls the current through the transmitter coil (103) in response to the coil current error with the control loop (511) being active during the communication time intervals. A loop response of the control loop is attenuated for coil current errors in a reduced control range relative to coil current error indications outside the reduced control range, where the reduced control range includes a zero coil current error.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: June 23, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Neil Francis Joye, Klaas Jacob Lulofs
  • Patent number: 10536035
    Abstract: A wireless power transmitter (101)) comprises a resonance circuit (201) comprises a transmitter inductor (103) for generating a power transfer signal for wirelessly transferring power to the power receiver (105). A driver (203) generates a drive signal for the resonance circuit (201) and a resonance modification circuit (505) aligns the resonance frequency of the resonance circuit (201) with the drive frequency of the drive signal by slowing a state change for resonance circuit (201) for a fractional time interval of cycles of the drive signal. A load estimator (509) generates a load estimate reflecting an equivalent load resistor for the transmitter inductor (103) reflecting the loading of the power transfer signal. A drive frequency adapter (511) then adapts the drive frequency in response to the load estimate. The invention may in particular improve load modulation communication quality.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: January 14, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Neil Francis Joye, Klaas Jacob Lulofs, Eddy Gerrit Veltman, Andries Van Wageningen
  • Patent number: 10523052
    Abstract: A wireless power transfer system includes a power receiver and a power transmitter providing power using an inductive power signal. The power transmitter includes a resonance circuit having capacitive and inductive impedances, and a driver configured to generate a drive signal for the resonance circuit. A frequency modification circuit is configured to control the resonance frequency of the resonance circuit by slowing a state change for the capacitive and/or inductive impedance for a fractional time interval of at least some cycles of the drive signal, The frequency modification circuit is configured to align at least one of a start time and an end time for the fractional time interval to transitions of a timing signal. In the power transmitter, the driver is configured to generate the timing signal to have transitions synchronized to the drive signal. The slowing may be by impeding current flow between the capacitive and inductive impedances.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: December 31, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Wilhelmus Gerardus Maria Ettes, Antonius Adriaan Maria Staring, Klaas Jacob Lulofs, Eddy Gerrit Veltman
  • Patent number: 10340738
    Abstract: A power transmitter (2) for transferring power to a power receiver comprises a first inductor (307) for providing power and a second inductor (407) for receiving data signals from a power receiver. The first (307) and second (407) inductors are separate inductors in a power transfer circuit (701) and a data signal receiving circuit (702). The data signal receiving circuit (702) comprises a data extracting circuit (1007) for extracting the data signals received by the second inductor (407). The power transmitter comprises a control circuit (401) for controlling the power in dependence on the data signals. The power transmitter transfers power during power transfer periods and receives data during communication periods, communication periods corresponding to periods wherein power is low.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: July 2, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Neil Francis Joye, Klaas Jacob Lulofs, Andries Van Wageningen, Wilhelmus Gerardus Maria Ettes
  • Patent number: 10263469
    Abstract: A power transmitter (101) is arranged to transfer power to a power receiver (105) via a wireless inductive power transfer signal transmitted from a transmit coil (103) to a power receiver (105). A first communication unit (305) communicates a message to the power receiver (105) on a first communication link A second communication unit (307) receives data from the power receiver (105) on a separate second communication link having a longer range. The power receiver (105) comprises a third communication unit (405) which receives the first message. A response generator (407) generates a response message to the message and a fourth communication unit (409) transmits the response message to the power transmitter (103) over the second communication link.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: April 16, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Andries Van Wageningen, Klaas Jacob Lulofs
  • Patent number: 10231572
    Abstract: The present invention relates to a consumable recognition system for recognizing placement and/or type of consumable containing a food substance for the preparation of a beverage by use of a beverage dispenser. To enable the recognition of placement and/or type of consumable in a simple, foolproof and easily implementable way the system comprises a plurality of magnetic and/or electric field elements (31, 32, 33, 301) for separately sensing a magnetic and/or electric field, wherein said consumable comprises one or more magnetically and/or electrically conductive elements (42, 51, 61, 71, 81, 82, 91, 92) and the sensed magnetic fields depend on at least one characteristic of the one or more magnetically and/or electrically conductive elements, a driver (34) for providing drive currents to said magnetic and/or electric field elements, and a signal processor (35) for recognizing placement and/or type of consumable based on the sensed magnetic and/or electric fields.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: March 19, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jasper De Vreede, Karel Johannes Adrianus Van Den Aker, Franciscus Johannes Gerardus Hakkens, Egbertus Reinier Jacobs, Mart Kornelis-Jan Te Velde, Christoph Dobrusskin, Gerben Kooijman, Klaas Jacob Lulofs, Frederik Jan De Bruijn, Johannes Wilhelmus Weekamp, Susanne Maaike Valster
  • Patent number: 10193393
    Abstract: A wireless power transfer system includes a power receiver and a power transmitter providing power to this using an inductive power signal. The power transmitter comprises a variable resonance circuit (201) having a variable resonance frequency and generating the inductive power signal. A driver (203) generates the drive signal and a load modulation receiver (303) demodulates load modulation of the inductive power signal. An adaptor (305) adapts the operating frequency and the resonance frequency to converge, and specifically is arranged to control the operating frequency and the resonance frequency to be substantially the same. The adaptation of the operating frequency and the resonance frequency is further in response to a demodulation quality measure. The invention may allow improved communication, and in particular may reduce intermodulation distortion.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: January 29, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Wilhelmus Gerardus Maria Ettes, Antonius Adriaan Maria Staring, Klaas Jacob Lulofs, Eddy Gerrit Veltman
  • Patent number: 10170943
    Abstract: A power transmitter (101) provides power transfer to a power receiver (105) using a wireless inductive power transfer signal. The power transmitter (101) comprises an inductor (103) generating the power transfer signal when a voltage drive signal is applied. A measurement unit (311) performs measurements of a current or voltage of the inductor (103). The measurements are performed with a time offset relative to a reference signal synchronized to the voltage drive signal. An adaptor (313) can vary the time offset to determine an optimum measurement timing offset resulting in a maximum demodulation depth which reflects a difference measure for measurements for different modulation loads of the power transfer signal. A demodulator (309) then demodulates load modulation of the inductive carrier signal from measurements with the time offset set to the optimum measurement timing offset. In some scenarios, both the timing and duration of measurements may be varied. The approach improves communication reliability.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: January 1, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Neil Francis Joye, Klaas Jacob Lulofs, Andries Van Wageningen