Patents by Inventor Klaus-Dieter Morhard

Klaus-Dieter Morhard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7618867
    Abstract: A method of forming a doped portion of a semiconductor substrate includes: defining a plurality of protruding portions on the substrate surface, the protruding portions having a minimum height; providing a pattern layer above the substrate surface; removing portions of the pattern layer from predetermined substrate portions; performing an ion implantation procedure such that an angle of the ions with respect to the substrate surface is less than 90°, wherein the ions are stopped by the pattern layer and by the protruding portions, the predetermined substrate portions thereby being doped with the ions; and removing the pattern layer.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: November 17, 2009
    Assignee: Infineon Technologies AG
    Inventors: Tobias Mono, Frank Jakubowski, Hermann Sachse, Lars Voelkel, Klaus-Dieter Morhard, Dietmar Henke
  • Patent number: 7452821
    Abstract: A method is disclosed by means of which contact holes (K1), (K2) and (K3), leading to integrated components can be produced with just one structuring mask, whereby contact holes (K1) and (K3) lead to contact regions (25e, 45e) in the substrate (5) and contact holes (K2) lead to contact regions (35c, 50c) located on layer stacks (35, 50). An auxiliary layer is used for the etching of contact holes (K1), (K2), (K3), which covers a part of the contact holes and thus serves as a selection mask. The auxiliary layer can be structured with a low-resolution lithography in comparison with the mask, such that only one single high-resolution lithography is necessary for the formation of all contact holes (K1), (K2), (K3). The method is particularly suitable for the simultaneous production of contact holes for transistors in the cell field and the logic field of a DRAM.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: November 18, 2008
    Assignee: Infineon Technologies AG
    Inventors: Ulrike Gruening-Von Schwerin, Wolfgang Gustin, Klaus-Dieter Morhard
  • Publication number: 20080026530
    Abstract: A method of forming a doped portion of a semiconductor substrate includes: defining a plurality of protruding portions on the substrate surface, the protruding portions having a minimum height; providing a pattern layer above the substrate surface; removing portions of the pattern layer from predetermined substrate portions; performing an ion implantation procedure such that an angle of the ions with respect to the substrate surface is less than 90°, wherein the ions are stopped by the pattern layer and by the protruding portions, the predetermined substrate portions thereby being doped with the ions; and removing the pattern layer.
    Type: Application
    Filed: July 26, 2006
    Publication date: January 31, 2008
    Inventors: Tobias Mono, Frank Jakubowski, Hermann Sachse, Lars Voelkel, Klaus-Dieter Morhard, Dietmar Henke
  • Patent number: 7122434
    Abstract: A semiconductor structure 300 comprises a plurality of first track conductors 303, a plurality of second track conductors 304, which are insulated with respect to the first track conductors 303 and form a grid together with these first track conductors 303, and a plurality of third track conductors 307 parallel above the first track conductors 303, which third track conductors 307 partly cover the second track conductors 304 and are insulated with respect thereto, in which semiconductor structure 300, between in each case two adjacent second track conductors 304, there is located an electrical contact 305 between each first track conductor 303 and the corresponding third track conductor 307 which lies above it.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: October 17, 2006
    Assignee: Infineon Technologies AG
    Inventors: Christoph Ludwig, Klaus-Dieter Morhard, Christoph Kutter
  • Patent number: 7030017
    Abstract: The invention relates to a method for the planarization of a semiconductor structure comprising a substrate, in which several sub-structures (STI; AA; AA?; AA?;) are provided. said sub-structures (STI; AA; AA?; AA?,) having a first sub-structure (AA?) with planar regions (PS) and first trench regions (DT). A layer to be planarized is applied over the semiconductor structure, said layer having appropriate recesses above the first trench regions (DT) of the first sub-structure (AA?). The method comprises the following steps: pre-planarization of the layer to be planarized by an etching step, using a pre-planarization mask, then subsequent planarization of the layer to be planarized by a chemical-mechanical polishing step.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: April 18, 2006
    Assignee: Infineon Technologies AG
    Inventors: Mark Hollatz, Klaus-Dieter Morhard, Alexander Trüby, Dirk Többen
  • Publication number: 20050201131
    Abstract: A semiconductor structure 300 comprises a plurality of first track conductors 303, a plurality of second track conductors 304, which are insulated with respect to the first track conductors 303 and form a grid together with these first track conductors 303, and a plurality of third track conductors 307 parallel above the first track conductors 303, which third track conductors 307 partly cover the second track conductors 304 and are insulated with respect thereto, in which semiconductor structure 300, between in each case two adjacent second track conductors 304, there is located an electrical contact 305 between each first track conductor 303 and the corresponding third track conductor 307 which lies above it.
    Type: Application
    Filed: May 9, 2005
    Publication date: September 15, 2005
    Inventors: Christoph Ludwig, Klaus-Dieter Morhard, Christoph Kutter
  • Patent number: 6909153
    Abstract: A semiconductor structure 300 comprises a plurality of first track conductors 303, a plurality of second track conductors 304, which are insulated with respect to the first track conductors 303 and form a grid together with these first track conductors 303, and a plurality of third track conductors 307 parallel above the first track conductors 303, which third track conductors 307 partly cover the second track conductors 304 and are insulated with respect thereto, in which semiconductor structure 300, between in each case two adjacent second track conductors 304, there is located an electrical contact 305 between each first track conductor 303 and the corresponding third track conductor 307 which lies above it.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: June 21, 2005
    Assignee: Infineon Technologies AG
    Inventors: Christoph Ludwig, Klaus-Dieter Morhard, Christoph Kutter
  • Patent number: 6828191
    Abstract: A trench capacitor, in particular for use in a semiconductor memory cell, has a trench formed in a substrate; an insulation collar formed in an upper region of the trench; an optional buried plate in the substrate region serving as a first capacitor plate; a dielectric layer lining the lower region of the trench and the insulation collar as a capacitor dielectric; a conductive second filling material filled into the trench as a second capacitor plate; and a buried contact underneath the surface of the substrate. The substrate has, underneath its surface in the region of the buried contact, a doped region introduced by implantation, plasma doping and/or vapor phase deposition. A tunnel layer, in particular an oxide, nitride or oxinitride layer, is preferably formed at the interface of the buried contact. A method for producing a trench capacitor is also provided.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: December 7, 2004
    Assignee: Siemens Aktiengesellschaft
    Inventors: Kai Wurster, Martin Schrems, Jürgen Faul, Klaus-Dieter Morhard, Alexandra Lamprecht, Odile Dequiedt
  • Publication number: 20040206722
    Abstract: A method is disclosed by means of which contact holes (K1), (K2) and (K3), leading to integrated components can be produced with just one structuring mask, contact regions (25e, 45e) in the substrate (5) and contact holes (K2) lead to contact regions (35c, 50c) located on layer stacks (35, 50). An auxiliary layer is used for the etching of contact holes (K1), (K2), (K3), which covers a part of the contact holes and thus serves as a selection mask. The auxiliary layer can be structured with a low-resolution lithography in comparison with the mask, such that only one single high-resolution lithography is necessary for the formation of all contact holes (K1), (K2), (K3). The method is particularly suitable for the simultaneous production of contact holes for transistors in the cell field and the logic field of a DRAM.
    Type: Application
    Filed: June 2, 2004
    Publication date: October 21, 2004
    Inventors: Ulrike Gruening-Von Schwerin, Wolfgang Gustin, Klaus-Dieter Morhard
  • Publication number: 20040127040
    Abstract: The invention relates to a method for the planarization of a semiconductor structure comprising a substrate, in which several sub-structures (STI; AA; AA′; AA″;) are provided. said sub-structures (STI; AA; AA′; AA″,) having a first sub-structure (AA′) with planar regions (PS) and first trench regions (DT). A layer to be planarized is applied over the semiconductor structure, said layer having appropriate recesses above the first trench regions (DT) of the first sub-structure (AA′). The method comprises the following steps: pre-planarization of the layer to be planarized by an etching step, using a pre-planarization mask, then subsequent planarization of the layer to be planarized by a chemical-mechanical polishing step.
    Type: Application
    Filed: October 23, 2003
    Publication date: July 1, 2004
    Inventors: Mark Hollatz, Klaus-Dieter Morhard, Alexander Truby, Dirk Tobben
  • Patent number: 6548850
    Abstract: A trench capacitor is formed in a substrate and includes a trench having an upper region and a lower region. An insulating collar is formed in the upper region of the trench. The lower region of the trench extends through a buried well. A buried plate is formed around the lower region of the trench as an outer capacitor electrode. A dielectric layer, which forms the capacitor dielectric, lines the lower region of the trench and the insulating collar. A conductive trench filling is put into the trench. A conductive contact layer of tungsten nitride is provided above the insulating collar, between the substrate and the conductive trench filling, and acts as a diffusion barrier. This makes it possible to provide the trench capacitor more closely to the transistor, since the transistor is not damaged by material which is contained in the conductive trench filling.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: April 15, 2003
    Assignee: Infineon Technologies AG
    Inventors: Stefan Gernhard, Martin Schrems, Klaus-Dieter Morhard
  • Patent number: 6544856
    Abstract: A method for increasing a trench capacitance in deep trench capacitors is described, in which, in a standard method, after the etching of the arsenic glass, a wet-chemical etching is additionally performed. An n+-doped substrate results from the driving-out of the arsenic glass being widened in the trench, by about 20 nm, selectively both with respect to the lightly doped substrate and with respect to the oxide layer and with respect to the nitride layer.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: April 8, 2003
    Assignee: Infineon Technologies AG
    Inventors: Klaus-Dieter Morhard, Irene Sperl, Klaus Penner
  • Patent number: 6509599
    Abstract: A trench capacitor, in particular for use in a semiconductor memory cell, has a trench formed in a substrate; an insulation collar formed in an upper region of the trench; an optional buried plate in the substrate region serving as a first capacitor plate; a dielectric layer lining the lower region of the trench and the insulation collar as a capacitor dielectric; a conductive second filling material filled into the trench as a second capacitor plate; and a buried contact underneath the surface of the substrate. The substrate has, underneath its surface in the region of the buried contact, a doped region introduced by implantation, plasma doping and/or vapor phase deposition. A tunnel layer, in particular an oxide, nitride or oxinitride layer, is preferably formed at the interface of the buried contact.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: January 21, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventors: Kai Wurster, Martin Schrems, Jürgen Faul, Klaus-Dieter Morhard, Alexandra Lamprecht, Odile Dequiedt
  • Publication number: 20030006506
    Abstract: A semiconductor structure 300 comprises a plurality of first track conductors 303, a plurality of second track conductors 304, which are insulated with respect to the first track conductors 303 and form a grid together with these first track conductors 303, and a plurality of third track conductors 307 parallel above the first track conductors 303, which third track conductors 307 partly cover the second track conductors 304 and are insulated with respect thereto, in which semiconductor structure 300, between in each case two adjacent second track conductors 304, there is located an electrical contact 305 between each first track conductor 303 and the corresponding third track conductor 307 which lies above it.
    Type: Application
    Filed: May 31, 2002
    Publication date: January 9, 2003
    Inventors: Christoph Ludwig, Klaus-Dieter Morhard, Christoph Kutter
  • Publication number: 20020018377
    Abstract: A method for increasing a trench capacitance in deep trench capacitors is described, in which, in a standard method, after the etching of the arsenic glass, a wet-chemical etching is additionally performed. An n+-doped substrate results from the driving-out of the arsenic glass being widened in the trench, by about 20 nm, selectively both with respect to the lightly doped substrate and with respect to the oxide layer and with respect to the nitride layer.
    Type: Application
    Filed: June 13, 2001
    Publication date: February 14, 2002
    Inventors: Klaus-Dieter Morhard, Irene Sperl, Klaus Penner
  • Patent number: 6329703
    Abstract: A contact between a polycrystalline silicon structure and a monocrystalline silicon region is produced by doping the silicon structure in amorphous or polycrystalline form and/or doping the monocrystalline silicon region with a dopant, in particular with oxygen, in such a concentration that a solubility limit is exceeded. In a subsequent heat treatment, dopant precipitations are formed which either control grain growth in the polycrystalline silicon layer or prevent a propagation of crystal faults into a substrate in the monocrystalline silicon region. Such a contact can be used, in particular, as a buried strap in a DRAM trench cell.
    Type: Grant
    Filed: February 25, 1998
    Date of Patent: December 11, 2001
    Assignee: Infineon Technologies AG
    Inventors: Martin Schrems, Kai Wurster, Klaus-Dieter Morhard, Joachim Hoepfner
  • Patent number: 6068928
    Abstract: A method for producing a polycrystalline silicon structure and a polycrystalline silicon layer to be produced by the method of first forming a primary silicon structure in an amorphous or polycrystalline form, and doping the structure with a dopant, in particular with oxygen, in a concentration exceeding the solubility limit. In a subsequent heat treatment, dopant precipitations are formed which control grain growth in a secondary structure being produced. Such a contact polycrystalline silicon structure can be used, in particular, as a connection of a monocrystalline silicon region.
    Type: Grant
    Filed: February 25, 1998
    Date of Patent: May 30, 2000
    Assignee: Siemens Aktiengesellschaft
    Inventors: Martin Schrems, Kai Wurster, Klaus-Dieter Morhard, Joachim Hoepfner