Patents by Inventor Klaus Ehrmann

Klaus Ehrmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190227343
    Abstract: The present disclosure is directed to lens, methods of making, designing lens and/or methods using lens in which performance may be improved by providing one or more steps in the central portion of the optical zone and one or more steps in the peripheral portion of the optic zone. In some embodiments, such lens may be useful for correcting refractive error of an eye and/or for controlling eye growth.
    Type: Application
    Filed: December 18, 2018
    Publication date: July 25, 2019
    Inventors: Brien Anthony Holden, Padmaja Rajagopal Sakaridurg, Klaus Ehrmann, Fabian Conrad, Arthur Ho
  • Publication number: 20190227344
    Abstract: Certain embodiments are directed to lenses, devices and/or methods. For example, a lens for an eye having an optical axis and an aberration profile along its optical axis, the aberration profile having a focal distance and including higher order aberrations having at least one of a primary spherical aberration component C(4,0) and a secondary spherical aberration component C(6,0). The aberration profile may provide, for a model eye with no aberrations and an on-axis length equal to the focal distance: (i) a peak, first retinal image quality (RIQ) within a through focus range that remains at or above a second RIQ over the through focus range that includes said focal distance, where the first RIQ is at least 0.35, the second RIQ is at least 0.1 and the through focus range is at least 1.8 Diopters; (ii) a RIQ of 0.3 with a through focus slope that improves in a direction of eye growth; and (iii) a RIQ of 0.3 with a through focus slope that degrades in a direction of eye growth.
    Type: Application
    Filed: December 19, 2018
    Publication date: July 25, 2019
    Inventors: Ravi Chandra Bakaraju, Klaus Ehrmann, Arthur Ho
  • Patent number: 10352816
    Abstract: A method for assessing the similarity between a power profile of a manufactured optic device and a nominal power profile upon which the power profile of the manufactured optic device is based. The method comprises measuring the power profile of manufactured optic device, identifying a region of interest from the measured power profile of manufactured optic device, and applying an offset to the measured power profile to substantially minimize a statistical quantifier for quantifying the similarity between the nominal power profile and the offset measured power profile. The method further comprises comparing the offset and the statistical quantifier to predefined quality control metrics, determining whether the measured power profile meets the predefined quality control metrics based, at least in part on the comparison.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: July 16, 2019
    Assignee: Brien Holden Vision Institute Limited
    Inventors: Fabian Conrad, Ravi Chandra Bakaraju, Klaus Ehrmann
  • Publication number: 20190099071
    Abstract: A device for generating a stimulus in the form of at least one liquid droplet to evaluate ocular sensitivity, the device comprising a light source configured to illuminate an eye of the subject; a liquid reservoir configured to store a liquid; and a nozzle in fluid communication with the liquid reservoir and configured to deliver at least one liquid droplet to an eye of a subject. Delivery of the at least one liquid droplet to the eye of the subject provides a stimulus to the ocular surface of the subject's eye and enables the evaluation of the ocular sensitivity of the subject's eye.
    Type: Application
    Filed: March 24, 2016
    Publication date: April 4, 2019
    Inventor: Klaus Ehrmann
  • Patent number: 10209535
    Abstract: A lens for an eye having an optical axis and an aberration profile along its optical axis, the aberration profile having a focal distance and including higher order aberrations having at least one of a primary spherical aberration component and a secondary spherical aberration component. The aberration profile may provide, for a model eye with no aberrations and an on-axis length equal to the focal distance: a peak, first retinal image quality (RIQ) within a through focus range that remains at or above a second RIQ over the through focus range that includes said focal distance, where the first RIQ is at least 0.35, the second RIQ is at least 0.1 and the through focus range is at least 1.8 Diopters.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: February 19, 2019
    Assignee: Brien Holden Vision Institute
    Inventors: Ravi Chandra Bakaraju, Klaus Ehrmann, Arthur Ho
  • Patent number: 10203522
    Abstract: The present disclosure is directed to lenses, devices, methods and/or systems for addressing refractive error. Certain embodiments are directed to changing or controlling the wavefront of the light entering a human eye. The lenses, devices, methods and/or systems can be used for correcting, addressing, mitigating or treating refractive errors and provide excellent vision at distances encompassing far to near without significant ghosting. The refractive error may for example arise from myopia, hyperopia, or presbyopia with or without astigmatism. Certain disclosed embodiments of lenses, devices and/or methods include embodiments that address foveal and/or peripheral vision. Exemplary of lenses in the fields of certain embodiments include contact lenses, corneal onlays, corneal inlays, and lenses for intraocular devices both anterior and posterior chamber, accommodating intraocular lenses, electro-active spectacle lenses and/or refractive surgery.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: February 12, 2019
    Assignee: Brien Holden Vision Institute
    Inventors: Ravi Chandra Bakaraju, Klaus Ehrmann, Arthur Ho, Brien Anthony Holden
  • Patent number: 10191300
    Abstract: The present disclosure is directed to lens, methods of making, designing lens and/or methods using lens in which performance may be improved by providing one or more steps in the central portion of the optical zone and one or more steps in the peripheral portion of the optic zone. In some embodiments, such lens may be useful for correcting refractive error of an eye and/or for controlling eye growth.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: January 29, 2019
    Assignee: Brien Holden Vision Institute
    Inventors: Brien Anthony Holden, Padmaja Rajagopal Sankaridurg, Klaus Ehrmann, Fabian Conrad, Arthur Ho
  • Publication number: 20180335648
    Abstract: Certain embodiments are directed to lenses, devices and/or methods. For example, a lens for an eye having an optical axis and an aberration profile along its optical axis, the aberration profile having a focal distance and including higher order aberrations having at least one of a primary spherical aberration component C(4,0) and a secondary spherical aberration component C(6,0). The aberration profile may provide, for a model eye with no aberrations and an on-axis length equal to the focal distance: (i) a peak, first retinal image quality (RIQ) within a through focus range that remains at or above a second RIQ over the through focus range that includes said focal distance, where the first RIQ is at least 0.35, the second RIQ is at least 0.1 and the through focus range is at least 1.8 Diopters; (ii) a RIQ of 0.3 with a through focus slope that improves in a direction of eye growth; and (iii) a RIQ of 0.3 with a through focus slope that degrades in a direction of eye growth.
    Type: Application
    Filed: June 14, 2018
    Publication date: November 22, 2018
    Inventors: Ravi Chandra Bakaraju, Klaus Ehrmann, Arthur Ho
  • Publication number: 20180184895
    Abstract: Described herein is a light directing assembly for use in an object analysis system. The light directing assembly includes a plurality of optical relay assemblies. Each optical relay assembly includes at least one optical element configured to relay an interrogation beam from a light transmission system to an object and relay a return beam from the object to the light transmission system, the return beam being generated by reflection or back scattering of the interrogation beam by the object. Each optical relay assembly defines an interrogation angle at which the interrogation beam relayed by the optical relay assembly reaches the object, and an optical path length being the distance from the light transmission system to the object travelled by an interrogation beam via the optical relay assembly.
    Type: Application
    Filed: February 28, 2018
    Publication date: July 5, 2018
    Inventors: Klaus Ehrmann, Darrin Mark Falk, Cathleen Fedtke
  • Publication number: 20180136487
    Abstract: The present disclosure is directed to lenses, devices, methods and/or systems for addressing refractive error. Certain embodiments are directed to changing or controlling the wavefront of the light entering a human eye. The lenses, devices, methods and/or systems can be used for correcting, addressing, mitigating or treating refractive errors and provide excellent vision at distances encompassing far to near without significant ghosting. The refractive error may for example arise from myopia, hyperopia, or presbyopia with or without astigmatism. Certain disclosed embodiments of lenses, devices and/or methods include embodiments that address foveal and/or peripheral vision. Exemplary of lenses in the fields of certain embodiments include contact lenses, corneal onlays, corneal inlays, and lenses for intraocular devices both anterior and posterior chamber, accommodating intraocular lenses, electro-active spectacle lenses and/or refractive surgery.
    Type: Application
    Filed: July 31, 2017
    Publication date: May 17, 2018
    Inventors: Ravi Chandra Bakaraju, Klaus Ehrmann, Arthur Ho, Brien Anthony Holden
  • Patent number: 9936867
    Abstract: Described herein is a light directing assembly for use in an object analysis system. The light directing assembly includes a plurality of optical relay assemblies. Each optical relay assembly includes at least one optical element configured to relay an interrogation beam from a light transmission system to an object and relay a return beam from the object to the light transmission system, the return beam being generated by reflection or back scattering of the interrogation beam by the object. Each optical relay assembly defines an interrogation angle at which the interrogation beam relayed by the optical relay assembly reaches the object, and an optical path length being the distance from the light transmission system to the object traveled by an interrogation beam via the optical relay assembly.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: April 10, 2018
    Assignee: Brien Holden Vision Institute
    Inventors: Klaus Ehrmann, Darrin Mark Falk, Cathleen Fedtke
  • Publication number: 20170322110
    Abstract: A method for assessing the similarity between a power profile of a manufactured optic device and a nominal power profile upon which the power profile of the manufactured optic device is based. The method comprises measuring the power profile of manufactured optic device, identifying a region of interest from the measured power profile of manufactured optic device, and applying an offset to the measured power profile to substantially minimize a statistical quantifier for quantifying the similarity between the nominal power profile and the offset measured power profile. The method further comprises comparing the offset and the statistical quantifier to predefined quality control metrics, determining whether the measured power profile meets the predefined quality control metrics based, at least in part on the comparison.
    Type: Application
    Filed: November 11, 2015
    Publication date: November 9, 2017
    Applicant: Brien Holden Vision Institute
    Inventors: Fabian Conrad, Ravi Chandra Bakaraju, Klaus Ehrmann
  • Publication number: 20170285369
    Abstract: The present disclosure is directed to lenses, devices, methods and/or systems for addressing refractive error. Certain embodiments are directed to changing or controlling the wavefront of the light entering a human eye. The lenses, devices, methods and/or systems can be used for correcting, addressing, mitigating or treating refractive errors and provide excellent vision at distances encompassing far to near without significant ghosting. The refractive error may for example arise from myopia, hyperopia, or presbyopia with or without astigmatism. Certain disclosed embodiments of lenses, devices and/or methods include embodiments that address foveal and/or peripheral vision. Exemplary of lenses in the fields of certain embodiments include contact lenses, corneal onlays, corneal inlays, and lenses for intraocular devices both anterior and posterior chamber, accommodating intraocular lenses, electro-active spectacle lenses and/or refractive surgery.
    Type: Application
    Filed: October 15, 2015
    Publication date: October 5, 2017
    Inventors: Ravi Chandra Bakaraju, Klaus Ehrmann, Arthur Ho, Brien Anthony Holden
  • Patent number: 9759930
    Abstract: The present disclosure is directed to lenses, devices, methods and/or systems for addressing refractive error. Certain embodiments are directed to changing or controlling the wavefront of the light entering a human eye. The lenses, devices, methods and/or systems can be used for correcting, addressing, mitigating or treating refractive errors and provide excellent vision at distances encompassing far to near without significant ghosting. The refractive error may for example arise from myopia, hyperopia, or presbyopia with or without astigmatism. Certain disclosed embodiments of lenses, devices and/or methods include embodiments that address foveal and/or peripheral vision. Exemplary of lenses in the fields of certain embodiments include contact lenses, corneal onlays, corneal inlays, and lenses for intraocular devices both anterior and posterior chamber, accommodating intraocular lenses, electro-active spectacle lenses and/or refractive surgery.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: September 12, 2017
    Assignee: Brien Holden Vision Institute
    Inventors: Ravi Chandra Bakaraju, Klaus Ehrmann, Arthur Ho, Brien Anthony Holden
  • Publication number: 20170212363
    Abstract: The present disclosure is directed to lenses, devices, methods and/or systems for addressing refractive error. Certain embodiments are directed to changing or controlling the wavefront of the light entering a human eye. The lenses, devices, methods and/or systems can be used for correcting, addressing, mitigating or treating refractive errors and provide excellent vision at distances encompassing far to near without significant ghosting. The refractive error may for example arise from myopia, hyperopia, or presbyopia with or without astigmatism. Certain disclosed embodiments of lenses, devices and/or methods include embodiments that address foveal and/or peripheral vision. Exemplary of lenses in the fields of certain embodiments include contact lenses, corneal onlays, corneal inlays, and lenses for intraocular devices both anterior and posterior chamber, accommodating intraocular lenses, electro-active spectacle lenses and/or refractive surgery.
    Type: Application
    Filed: November 21, 2016
    Publication date: July 27, 2017
    Inventors: Ravi Chandra Bakaraju, Klaus Ehrmann, Arthur Ho, Brien Anthony Holden
  • Publication number: 20170176772
    Abstract: The present disclosure is directed to lenses, devices, methods and/or systems for addressing refractive error. Certain embodiments are directed to changing or controlling the wavefront of the light entering a human eye. The lenses, devices, methods and/or systems can be used for correcting, addressing, mitigating or treating refractive errors and provide excellent vision at distances encompassing far to near without significant ghosting. The refractive error may for example arise from myopia, hyperopia, or presbyopia with or without astigmatism. Certain disclosed embodiments of lenses, devices and/or methods include embodiments that address foveal and/or peripheral vision. Exemplary of lenses in the fields of certain embodiments include contact lenses, corneal onlays, corneal inlays, and lenses for intraocular devices both anterior and posterior chamber, accommodating intraocular lenses, electro-active spectacle lenses and/or refractive surgery.
    Type: Application
    Filed: November 15, 2016
    Publication date: June 22, 2017
    Inventors: Ravi Chandra Bakaraju, Klaus Ehrmann, Arthur Ho, Brien Anthony Holden
  • Publication number: 20170115508
    Abstract: Certain embodiments are directed to lenses, devices and/or methods. For example, a lens for an eye having an optical axis and an aberration profile along its optical axis, the aberration profile having a focal distance and including higher order aberrations having at least one of a primary spherical aberration component C(4,0) and a secondary spherical aberration component C(6,0). The aberration profile may provide, for a model eye with no aberrations and an on-axis length equal to the focal distance: (i) a peak, first retinal image quality (RIQ) within a through focus range that remains at or above a second RIQ over the through focus range that includes said focal distance, where the first RIQ is at least 0.35, the second RIQ is at least 0.1 and the through focus range is at least 1.8 Diopters; (ii) a RIQ of 0.3 with a through focus slope that improves in a direction of eye growth; and (iii) a RIQ of 0.3 with a through focus slope that degrades in a direction of eye growth.
    Type: Application
    Filed: January 5, 2017
    Publication date: April 27, 2017
    Inventors: Ravi Chandra Bakaraju, Klaus Ehrmann, Arthur Ho
  • Publication number: 20170095149
    Abstract: Described herein is a light directing assembly for use in an object analysis system. The light directing assembly includes a plurality of optical relay assemblies. Each optical relay assembly includes at least one optical element configured to relay an interrogation beam from a light transmission system to an object and relay a return beam from the object to the light transmission system, the return beam being generated by reflection or back scattering of the interrogation beam by the object. Each optical relay assembly defines an interrogation angle at which the interrogation beam relayed by the optical relay assembly reaches the object, and an optical path length being the distance from the light transmission system to the object traveled by an interrogation beam via the optical relay assembly.
    Type: Application
    Filed: August 18, 2016
    Publication date: April 6, 2017
    Inventors: Klaus Ehrmann, Darrin Mark Falk, Cathleen Fedtke
  • Patent number: 9575334
    Abstract: Certain embodiments are directed to lenses, devices and/or methods. For example, a lens for an eye having an optical axis and an aberration profile along its optical axis, the aberration profile having a focal distance and including higher order aberrations having at least one of a primary spherical aberration component C(4,0) and a secondary spherical aberration component C(6,0). The aberration profile may provide, for a model eye with no aberrations and an on-axis length equal to the focal distance: (i) a peak, first retinal image quality (RIQ) within a through focus range that remains at or above a second RIQ over the through focus range that includes said focal distance, where the first RIQ is at least 0.35, the second RIQ is at least 0.1 and the through focus range is at least 1.8 Diopters; (ii) a RIQ of 0.3 with a through focus slope that improves in a direction of eye growth; and (iii) a RIQ of 0.3 with a through focus slope that degrades in a direction of eye growth.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: February 21, 2017
    Assignee: Brien Holden Vision Institute
    Inventors: Ravi Chandra Bakaraju, Klaus Ehrmann, Arthur Ho
  • Patent number: 9541773
    Abstract: The present disclosure is directed to lenses, devices, methods and/or systems for addressing refractive error. Certain embodiments are directed to changing or controlling the wavefront of the light entering a human eye. The lenses, devices, methods and/or systems can be used for correcting, addressing, mitigating or treating refractive errors and provide excellent vision at distances encompassing far to near without significant ghosting. The refractive error may for example arise from myopia, hyperopia, or presbyopia with or without astigmatism. Certain disclosed embodiments of lenses, devices and/or methods include embodiments that address foveal and/or peripheral vision. Exemplary of lenses in the fields of certain embodiments include contact lenses, corneal onlays, corneal inlays, and lenses for intraocular devices both anterior and posterior chamber, accommodating intraocular lenses, electro-active spectacle lenses and/or refractive surgery.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: January 10, 2017
    Assignee: Brien Holden Vision Institute
    Inventors: Ravi Chandra Bakaraju, Klaus Ehrmann, Arthur Ho, Brien Anthony Holden