Patents by Inventor Klaus Engel

Klaus Engel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10068368
    Abstract: The inner volume of an inhomogeneous three-dimensional object is visualized by a plurality of simulated visual rays. For a respective visual ray entering the object volume, i) a scatter position is determined along the visual ray, ii) a scatter direction is selected in dependence on a random process, and iii) the visual ray is scattered at the scatter position in the selected scatter direction. Steps i) to iii) are repeated until the visual ray is absorbed in the object volume or exits the object volume, wherein the exiting visual ray is incident on an illumination source and, in dependence on a brightness and/or color value of the illumination source, an illumination contribution of the visual ray to a respective visualization pixel is ascertained.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: September 4, 2018
    Assignee: Siemens Healthcare GmbH
    Inventor: Klaus Engel
  • Patent number: 10055878
    Abstract: A method of visualizing a three-dimensional object from a data volume is disclosed. In an embodiment, the method includes computing an irradiance cache for the data volume; and applying the irradiance cache during rendering of a three-dimensional image from the data volume. In an embodiment, entries of the irradiance cache are organized in a uniform grid.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: August 21, 2018
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Klaus Engel, Jana Martschinke
  • Patent number: 9984493
    Abstract: A method and apparatus for volume rendering based 3D image filtering and real-time cinematic volume rendering is disclosed. A set of 2D projection images of the 3D volume is generated using cinematic volume rendering. A reconstructed 3D volume is generated from the set of 2D projection images using an inverse linear volumetric ray tracing operator. The reconstructed 3D volume inherits noise suppression and structure enhancement from the projection images generated using cinematic rendering, and is thus non-linearly filtered. Real-time volume rendering can be performed on the reconstructed 3D volume using volumetric ray tracing, and each projected image of the reconstructed 3D volume is an approximation of a cinematic rendered image of the original volume.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: May 29, 2018
    Assignee: Siemens Healthcare GmbH
    Inventors: Shaohua Kevin Zhou, Klaus Engel
  • Patent number: 9911225
    Abstract: Methods, apparatuses, and systems are provided for live capturing of light map image sequences for image-based lighting of medical data. Patient volume scan data for a target area is received over time by a processor. Lighting environment data for the target area is captured over time by a camera. The camera transmits the lighting environment data to the processor over time. The processor lights the patient volume scan data with the lighting environment data into lighted volume data over time. The processor renders an image of the lighted volume data over time.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: March 6, 2018
    Assignee: Siemens Healthcare GmbH
    Inventors: Klaus Engel, Daphne Yu, Gianluca Paladini
  • Publication number: 20180061111
    Abstract: A method of visualizing a three-dimensional object from a data volume is disclosed. In an embodiment, the method includes computing an irradiance cache for the data volume; and applying the irradiance cache during rendering of a three-dimensional image from the data volume. In an embodiment, entries of the irradiance cache are organized in a uniform grid.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Applicant: Siemens Healthcare GmbH
    Inventors: Klaus ENGEL, Jana MARTSCHINKE
  • Patent number: 9905042
    Abstract: A three-dimensional object is provided within a light probe, at least one intensive light source of the light probe is detected and selected. Furthermore, a multiplicity of rays are simulated for a respective visualization pixel. For a respective ray entering into an object volume, i) a scattering position is determined, ii) a scattering direction is selected, with a decision being made depending on a first random process as to whether the ray is scattered in the direction of the intensive light source or in a scattering direction to be selected depending on a second random process, and iii) the ray is scattered in the selected scattering direction. Steps i) to iii) are repeated until the ray is absorbed in the object volume or emerges from the object volume and impinges on the light probe.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: February 27, 2018
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventor: Klaus Engel
  • Publication number: 20170308656
    Abstract: An artificial intelligence agent is machine trained and used to provide physically-based rendering settings. By using deep learning and/or other machine training, settings of multiple rendering parameters may be provided for consistent imaging even in physically-based rendering.
    Type: Application
    Filed: July 7, 2017
    Publication date: October 26, 2017
    Inventors: Kaloian Petkov, Shun Miao, Daphne Yu, Bogdan Georgescu, Klaus Engel, Tommaso Mansi, Dorin Comaniciu
  • Patent number: 9799135
    Abstract: The present embodiments relate to cinematic volume renderings and volumetric Monte-Carlo path tracing. The present embodiments include systems and methods for integrating semantic information into cinematic volume renderings. Scan data of a volume is captured by a scanner and transmitted to a server or workstation for rendering. The scan data is received by a server or workstation. The server or workstation extracts semantic information and/or applies semantic processing to the scan data. A cinematic volume rendering is generated from the scan data and the extracted semantic information.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: October 24, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Shaohua Kevin Zhou, Klaus Engel, David Liu, Daphne Yu, Bernhard Geiger, Nathan Lay
  • Publication number: 20170294042
    Abstract: The inner volume of an inhomogeneous three-dimensional object is visualized by a plurality of simulated visual rays. For a respective visual ray entering the object volume, i) a scatter position is determined along the visual ray, ii) a scatter direction is selected in dependence on a random process, and iii) the visual ray is scattered at the scatter position in the selected scatter direction. Steps i) to iii) are repeated until the visual ray is absorbed in the object volume or exits the object volume, wherein the exiting visual ray is incident on an illumination source and, in dependence on a brightness and/or color value of the illumination source, an illumination contribution of the visual ray to a respective visualization pixel is ascertained.
    Type: Application
    Filed: September 23, 2014
    Publication date: October 12, 2017
    Applicant: SIEMENS HEALTHCARE GMBH
    Inventor: Klaus Engel
  • Publication number: 20170262598
    Abstract: An artificial intelligence agent is machine trained and used to provide physically-based rendering settings. By using deep learning and/or other machine training, settings of multiple rendering parameters may be provided for consistent imaging even in physically-based rendering.
    Type: Application
    Filed: June 23, 2016
    Publication date: September 14, 2017
    Inventors: Kaloian Petkov, Shun Miao, Daphne Yu, Bogdan Georgescu, Klaus Engel, Tommaso Mansi, Dorin Comaniciu
  • Patent number: 9760690
    Abstract: An artificial intelligence agent is machine trained and used to provide physically-based rendering settings. By using deep learning and/or other machine training, settings of multiple rendering parameters may be provided for consistent imaging even in physically-based rendering.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: September 12, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Kaloian Petkov, Shun Miao, Daphne Yu, Bogdan Georgescu, Klaus Engel, Tommaso Mansi, Dorin Comaniciu
  • Publication number: 20170256090
    Abstract: The present embodiments relate to cinematic volume renderings and/or volumetric Monte-Carlo path tracing. By way of introduction, the present embodiments described below include apparatuses and methods for cinematic rendering of unfolded three-dimensional volumes. An image analysis algorithm is performed on an input volume to extract one or more structures of interest, such as a rib centerline, a liver surface or another three-dimensional volume. Based on the extracted three-dimensional structure(s), a geometric transformation is computed to generate an unfolded three-dimensional volume of the structure(s). Cinematic volume rendering techniques are used to generate a rendered image from the unfolded three-dimensional volume.
    Type: Application
    Filed: March 4, 2016
    Publication date: September 7, 2017
    Inventors: Shaohua Kevin Zhou, Klaus Engel, Andreas Wimmer
  • Publication number: 20170186216
    Abstract: A three-dimensional object is provided within a light probe, at least one intensive light source of the light probe is detected and selected. Furthermore, a multiplicity of rays are simulated for a respective visualization pixel. For a respective ray entering into an object volume, i) a scattering position is determined, ii) a scattering direction is selected, with a decision being made depending on a first random process as to whether the ray is scattered in the direction of the intensive light source or in a scattering direction to be selected depending on a second random process, and iii) the ray is scattered in the selected scattering direction. Steps i) to iii) are repeated until the ray is absorbed in the object volume or emerges from the object volume and impinges on the light probe.
    Type: Application
    Filed: December 19, 2016
    Publication date: June 29, 2017
    Inventor: KLAUS ENGEL
  • Patent number: 9613452
    Abstract: A method and apparatus for volume rendering based 3D image filtering and real-time cinematic volume rendering is disclosed. A set of 2D projection images of the 3D volume is generated using cinematic volume rendering. A reconstructed 3D volume is generated from the set of 2D projection images using an inverse linear volumetric ray tracing operator. The reconstructed 3D volume inherits noise suppression and structure enhancement from the projection images generated using cinematic rendering, and is thus non-linearly filtered. Real-time volume rendering can be performed on the reconstructed 3D volume using volumetric ray tracing, and each projected image of the reconstructed 3D volume is an approximation of a cinematic rendered image of the original volume.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: April 4, 2017
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Shaohua Kevin Zhou, Klaus Engel
  • Publication number: 20170091982
    Abstract: Methods, apparatuses, and systems are provided for live capturing of light map image sequences for image-based lighting of medical data. Patient volume scan data for a target area is received over time by a processor. Lighting environment data for the target area is captured over time by a camera. The camera transmits the lighting environment data to the processor over time. The processor lights the patient volume scan data with the lighting environment data into lighted volume data over time. The processor renders an image of the lighted volume data over time.
    Type: Application
    Filed: September 29, 2015
    Publication date: March 30, 2017
    Inventors: Klaus Engel, Daphne Yu, Gianluca Paladini
  • Publication number: 20170061681
    Abstract: Functional and anatomical information are combined in medical imaging. The functional information is treated as a light source illuminating surrounding anatomy, not just along a viewing direction. As a result, rendered images of the anatomy include highlighting or visual lighting queues showing locations of biological activity using global illumination.
    Type: Application
    Filed: September 2, 2015
    Publication date: March 2, 2017
    Inventors: Klaus Engel, James Williams
  • Publication number: 20170061672
    Abstract: The present embodiments relate to cinematic volume renderings and volumetric Monte-Carlo path tracing. The present embodiments include systems and methods for integrating semantic information into cinematic volume renderings. Scan data of a volume is captured by a scanner and transmitted to a server or workstation for rendering. The scan data is received by a server or workstation. The server or workstation extracts semantic information and/or applies semantic processing to the scan data. A cinematic volume rendering is generated from the scan data and the extracted semantic information.
    Type: Application
    Filed: September 1, 2015
    Publication date: March 2, 2017
    Inventors: Shaohua Kevin Zhou, Klaus Engel, David Liu, Daphne Yu, Bernhard Geiger, Nathan Lay
  • Publication number: 20160331464
    Abstract: A first interface for reading image data of an anatomical region obtained by means of a medical imaging method is provided. A modeling module serves for establishing a volumetric biomechanical structure model of the anatomical region on the basis of the image data . Moreover, provision is made of a tracking module, couplable with a camera, for video-based registration of spatial gestures of a user. Furthermore, a simulation module, based on the biomechanical structure model, serves to assign a registered gesture to a simulated mechanical effect on the anatomical region , simulate a mechanical reaction of the anatomical region to the simulated mechanical effect, and modify the biomechanical structure model in accordance with the simulated mechanical reaction. Moreover, provision is made for a visualization module for the volumetric visualization of the biomechanical structure model.
    Type: Application
    Filed: May 10, 2016
    Publication date: November 17, 2016
    Inventors: Olivier Ecabert, Klaus Engel, Tommaso Mansi, Ingmar Voigt
  • Publication number: 20160269723
    Abstract: A method and apparatus for volume rendering based 3D image filtering and real-time cinematic volume rendering is disclosed. A set of 2D projection images of the 3D volume is generated using cinematic volume rendering. A reconstructed 3D volume is generated from the set of 2D projection images using an inverse linear volumetric ray tracing operator. The reconstructed 3D volume inherits noise suppression and structure enhancement from the projection images generated using cinematic rendering, and is thus non-linearly filtered. Real-time volume rendering can be performed on the reconstructed 3D volume using volumetric ray tracing, and each projected image of the reconstructed 3D volume is an approximation of a cinematic rendered image of the original volume.
    Type: Application
    Filed: December 21, 2015
    Publication date: September 15, 2016
    Inventors: Shaohua Kevin Zhou, Klaus Engel
  • Publication number: 20160267703
    Abstract: A method and apparatus for volume rendering based 3D image filtering and real-time cinematic volume rendering is disclosed. A set of 2D projection images of the 3D volume is generated using cinematic volume rendering. A reconstructed 3D volume is generated from the set of 2D projection images using an inverse linear volumetric ray tracing operator. The reconstructed 3D volume inherits noise suppression and structure enhancement from the projection images generated using cinematic rendering, and is thus non-linearly filtered. Real-time volume rendering can be performed on the reconstructed 3D volume using volumetric ray tracing, and each projected image of the reconstructed 3D volume is an approximation of a cinematic rendered image of the original volume.
    Type: Application
    Filed: March 9, 2015
    Publication date: September 15, 2016
    Inventors: Shaohua Kevin Zhou, Klaus Engel