Patents by Inventor Klaus Fischer

Klaus Fischer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210286204
    Abstract: The Kerr effect depends very strongly on the temperature and is associated with high operating voltages. The present invention relates to an electrically controllable optical element which comprises a cell (D) filled with a starting mixture (K) and having two substrates (1a, 1b) and a conductive layer (2a, 2b) applied onto the inner surface of the respective substrate (1a, 1b), wherein the starting mixture (K) comprises a mixture of dipolar, rod-shaped molecules (5) and semi-mesogenes (4) as active constituents, and wherein the starting mixture (K) forms a thin layer having a wide-meshed, anisotropic network (9) produced by photo-polymerization between the structured or/and flat conductive layers (2a, 2b), which are applied onto a substrate (1a, 1b), in a thin-film cell (D). According to the invention, an optically active surface profile (O) is incorporated on the inner surface of a substrate (1a or 1b) or into the substrate (1a or 1b) or both substrates (1a and 1b).
    Type: Application
    Filed: January 18, 2018
    Publication date: September 16, 2021
    Inventors: Klaus HOFFMANN, Joachim STUMPE, Thomas FISCHER, Michael RUTLOH
  • Patent number: 11096771
    Abstract: A device having a structured coating for adhering to rough, in particular biological, surfaces, includes a carrier layer, wherein a plurality of protrusions is arranged on the carrier layer, which protrusions each comprise at least a shaft having an end face pointing away from the surface, and wherein a further layer is arranged at least on the end face, wherein the layer has a different modulus of elasticity than the protrusion in question. The further layer can also fill the intermediate spaces between the protrusions such that an internal structured coating is produced.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: August 24, 2021
    Assignee: Leibniz-Institut für Neue Materiallen gemeinnützige GmbH
    Inventors: Eduard Arzt, Sarah Fischer, Klaus Kruttwig, René Hensel, Bernhard Schick, Gentiana Wenzel
  • Publication number: 20210236187
    Abstract: A surgical working instrument (3) is disclosed that is inserted in a working channel (7) of an endoscope (2) and is slidably located therein. A device (27) for determination of the relative position of the working instrument (3) to the endoscope (2) is configured to determine in an optical manner that the distal end (8) of the working instrument (3) has reached a distal end (8) of the working channel (7). The position determination device (27) comprises a light conductor (28) that is attached to the working instrument (3) and configured to receive light surrounding the working instrument (3) in the vicinity of its distal end (14), wherein based on the light received by the light conductor (28) the relative position of the light conductor (28) and thus the working instrument (3) in relation to the endoscope (2) can be determined.
    Type: Application
    Filed: February 3, 2021
    Publication date: August 5, 2021
    Inventors: Klaus Fischer, Alexander Neugebauer, Jan Jaeger, Bjoern Seitz
  • Patent number: 11076905
    Abstract: The inventive method of manufacturing a cryoprobe uses an assembly pin (25) for receiving a sleeve (20) that is to form a part of the head (13) of the cryoprobe and comprises three abutment surfaces (27, 29, 30) that are axially offset relative to each other, said abutment surfaces ensuring, following the attachment of the sleeve (20) and the nozzle (24) to the tube end (19), the correct axial positioning of the nozzle (24) and the sleeve (20), in particular, relative to the distal end surface (18) of the tube end (19). Consequently, the position of the nozzle (24) in the expansion chamber (23) that formed after the sleeve (20) was closed and thus the function of the cryoprobe are ensured.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: August 3, 2021
    Assignee: Erbe Elektromedizin GmbH
    Inventors: Klaus Fischer, Jörg Kronenthaler, Achim Brodbeck, Marcus Adler
  • Publication number: 20210235561
    Abstract: A circuit arrangement for connecting a plurality of LED modules in parallel comprises a positive pole terminal and a negative pole terminal for connecting a driver, a positive pole terminal line for electrically connecting the positive pole terminal to the modules, a negative pole terminal line for electrically connecting the negative pole terminal to the modules, a plurality of positive pole terminal contacts for electrically connecting the positive pole terminal line to anode terminal contacts of the modules, and a plurality of negative pole terminal contacts for electrically connecting the negative pole terminal line to cathode terminal contacts of the modules.
    Type: Application
    Filed: January 25, 2021
    Publication date: July 29, 2021
    Inventor: Klaus FISCHER
  • Publication number: 20210235560
    Abstract: A circuit arrangement for an LED luminaire comprises a plurality of LED strings, an anode terminal line, a cathode terminal line, a plurality of first switching elements, connected in series into the anode terminal line and subdivided into individual line sections, and a plurality of second switching elements, connected in series into the cathode terminal line and subdivided into individual line sections. Each of the LED strings may be connected to the anode terminal line via a first switching element and/or the second switching elements. Each of the first switching elements may be configured to feed an operating current to an LED string, to electrically connect line sections if the current flowing through the LED string exceeds a predetermined value, and to electrically isolate line sections if the current flowing through the LED string falls below a predetermined value.
    Type: Application
    Filed: January 21, 2021
    Publication date: July 29, 2021
    Inventors: Klaus Fischer, Felix Franck
  • Patent number: 10914946
    Abstract: A head-up display system with an imaging unit for generating an image on a projection surface is described. The projection surface is provided for reflecting at least a part of the image. The projection surface includes a transparent screen having a transparent substrate and at least one electrically conductive coating with at least one functional layer on at least one surface of the transparent substrate.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: February 9, 2021
    Assignee: SAINT-GOBAIN GLASS FRANCE
    Inventors: Klaus Fischer, Matthias Kuehne, Sandra Hornschuh, Roberto Zimmermann, Martin Henseler, Dagmar Schaefer, Michael Jansen
  • Publication number: 20210018749
    Abstract: A composite pane for a head-up display with an upper edge, a lower edge, and an HUD region, including an outer pane and an inner pane, which are joined to one another via a thermoplastic intermediate layer, and a transparent, electrically conductive coating on the surface of the inner pane facing the intermediate layer or within the intermediate layer, wherein the intermediate layer is formed by at least one ply of thermoplastic material, which is arranged between the electrically conductive coating and the outer pane, wherein the thickness of the ply of thermoplastic material is variable with a wedge angle over its vertical course between the lower edge and the upper edge at least in the HUD region, and wherein an anti-reflective coating is applied on the surface of the inner pane facing away from the intermediate layer.
    Type: Application
    Filed: February 4, 2019
    Publication date: January 21, 2021
    Inventors: Klaus FISCHER, Dagmar SCHAEFER, Roberto ZIMMERMANN
  • Publication number: 20200400945
    Abstract: A projection arrangement for a head-up display, including a composite pane, including an outer pane and an inner pane, which are joined to one another via a thermoplastic intermediate layer, having an upper edge and a lower edge and an HUD region; an electrically conductive coating on the surface of the outer pane or the inner pane facing the intermediate layer or provided within the intermediate layer; and a projector that is aimed at the HUD region; wherein the light of the projector has at least one p-polarised portion and wherein the electrically conductive coating has, in the spectral range from 400 nm to 650 nm, only a single local reflection maximum for p-polarised light, with this maximum in the range from 510 nm to 550 nm.
    Type: Application
    Filed: February 4, 2019
    Publication date: December 24, 2020
    Inventors: Klaus FISCHER, Dagmar SCHAEFER, Roberto ZIMMERMANN, Valentin SCHULZ
  • Patent number: 10820938
    Abstract: A tissue fusion instrument having electrodes that are only connected in a punctiform manner to their electrode carrier such that they are electrically conducting and thus, heat-conducting.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: November 3, 2020
    Assignee: ERBE ELEKTROMEDIZIN GMBH
    Inventors: Klaus Fischer, Achim Brodbeck, Daniel Schaeller
  • Publication number: 20200309116
    Abstract: The invention relates to a method for operating a piston compressor (100) having a reciprocating piston (111) in a cylinder (110), wherein an inlet valve (112) and an outlet valve (113) are provided in the cylinder (110) on the side of a medium (b) which is to be compressed and conveyed, wherein the reciprocating piston (111) is moved to and fro by way of a hydraulic drive (120, 121) with a hydraulic piston (120) with the use of a hydraulic medium (a) in a first volume (141), with which the reciprocating piston (111) is loaded on the side of the hydraulic drive (120, 121), wherein, if required, hydraulic medium (a) is fed into the first volume (141) and/or is discharged from the first volume (141) in a manner which is dependent on a position of the hydraulic piston (120) and/or a rotational angle ((p) of a shaft (121) which is provided for moving the hydraulic piston (120) in relation to a position (x) of the reciprocating piston (120) and/or a pressure (p) in the first volume (141), and to a piston compresso
    Type: Application
    Filed: November 6, 2018
    Publication date: October 1, 2020
    Inventors: Sascha DORNER, Christoph NAGL, Johannes FRITZER, Klaus FISCHER
  • Patent number: 10773997
    Abstract: A transparent pane comprising a transparent substrate and an electrically conductive coating on a surface of the transparent substrate is disclosed. The electrically conductive coating comprises four functional layers arranged one atop another. Each functional layer comprises a layer of optically highly refractive material with a refractive index >1.3, a first matching layer above the layer of optically highly refractive material, an electrically conductive layer above the first matching layer, and a second matching layer above the electrically conductive layer. The layer thickness of each conductive layer can be 5 nm to 25 nm and the total layer thickness of all electrically conductive layers can be 20 nm to 100 nm.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: September 15, 2020
    Assignee: SAINT-GOBAIN GLASS FRANCE
    Inventors: Klaus Fischer, Matthias Kuehne, Sandra Hornschuh, Roberto Zimmermann, Martin Henseler, Dagmar Schaefer, Michael Jansen
  • Publication number: 20200237421
    Abstract: The inventive device (10) can be used for tissue coagulation and/or tissue ablation. It comprises at least one electrode (16) that serves for generating a spark or plasma jet and is connectable to an electric source (20) for this purpose. The probe (11) is assigned to a measuring device (24) that emits and/or receives light in the proximity of the electrode (16) and determines the distance of the probe (11) from the tissue (36) and/or the tissue temperature and/or the composition of the influenced tissue (36). Preferably the measuring device (24) is operated synchronized with pulses or pauses of the pulse-pause-modulated radio frequency voltage (UHF) of the electrode (16) in order to simultaneously carry out the desired measurements during the operation of the instrument (11) and to feedback control the operation of the instrument (11) based on the gained measurement results.
    Type: Application
    Filed: January 21, 2020
    Publication date: July 30, 2020
    Inventors: Caglar Ataman, Klaus Fischer, Alexander Neugebauer, Sergio Vilches, Hans Zappe
  • Publication number: 20200188009
    Abstract: A method for the selective elevation and separation of tissues comprised of multiple layers and a surgical instrument for performing the method. The method may be performed without the requirement of a solid mechanical device insertion or transection through the mucosal layer. In particular, the method and surgical instrument may be used for the selected separation and/or resection of selected portions of benign or malignant tissues (e.g. defining tissue planes, polyp elevation and removal, submucosal tissue tunnelling, endoscopic mucosa resection, etc).
    Type: Application
    Filed: February 21, 2020
    Publication date: June 18, 2020
    Inventors: Klaus Fischer, Dan Maurice, John Day, Markus Enderle
  • Publication number: 20200129700
    Abstract: The invention relates to an instrument head, comprising: an exit opening (23); a first feed line (11) for the feed of a first fluid; a second feed line (12) for the feed of a second fluid; a reservoir (24) for storing the fluid fed via the second feed line (12); wherein the reservoir (24) is in fluid communication with the first feed line (11) and/or is adapted to be brought in fluid communication with the first feed line (11) via at least a valve (25) arranged in the instrument head, to deliver fluid stored in the reservoir (24) via the exit opening (23).
    Type: Application
    Filed: December 30, 2019
    Publication date: April 30, 2020
    Inventors: Andreas Fech, Klaus Fischer, Lars Blobel, Waldemar Wandel, Markus Enderle
  • Patent number: 10624689
    Abstract: The ablation device (11) according to the invention is distinguished by a head (20) having a noncircular cross-section and by electrodes (32, 33) being positioned at an acute angle relative to each other. Due to the angular arrangement of the electrodes and the appropriate configuration of the channels (28, 29), there results an approximately fan-shaped plasma beam with which—in particular with the alternating activation of the two electrodes—a wide strip-shaped ablation region can be achieved on hollow organs of living beings. Handling is reliable and simplified, and, compared to existing measures, the treatment time is reduced.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: April 21, 2020
    Assignee: Erbe Elektromedizin GmbH
    Inventors: Markus Enderle, Klaus Fischer, Thomas Stäbler
  • Patent number: 10603095
    Abstract: A method for the selective elevation and separation of tissues comprised of multiple layers and a surgical instrument for performing the method. The method may be performed without the requirement of a solid mechanical device insertion or transection through the mucosal layer. In particular, the method and surgical instrument may be used for the selected separation and/or resection of selected portions of benign or malignant tissues (e.g. defining tissue planes, polyp elevation and removal, submucosal tissue tunnelling, endoscopic mucosa resection, etc).
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: March 31, 2020
    Assignee: Erbe Elektromedizin GmbH
    Inventors: Klaus Fischer, Dan Maurice, John Day, Markus Enderle
  • Publication number: 20200093537
    Abstract: A preparation instrument comprising an HF-instrument with an electrode that is partially insulated by means of an insulating body, which is combined with a fluid applicator having a channel arranged in the insulating body for the application of a fluid to or into tissue. In some embodiments of the preparation instrument, the electrode is a spatula electrode which is inserted in the insulating body that does not cover sections of the surface of the electrode so that these sections may be in contact with the tissue. The insulating body preferably forms the channel wall that delimits the channel. The insulating body and the electrode may be flexible in order to adapt the form of the insulating body and the electrode, together, to the surgical task.
    Type: Application
    Filed: September 20, 2019
    Publication date: March 26, 2020
    Inventors: Klaus Fischer, Markus Enderle, Achim Brodbeck, Alexander Neagos, Andreas Fech
  • Patent number: 10589299
    Abstract: The invention relates to a method for mixing at least two fluids using an externally mixing nozzle for medical purposes, which has at least two outlet channels (10, 20) and at least two inlet openings (13, 23) with different or identical cross-sections, wherein two fluids with different volumetric flows and/or different viscosity are sprayed, and wherein the ratio of the cross-sections of the inlet channels (13, 23) and/or the outlet channels (10, 20) corresponds to the ratio of the volumetric flows so that the fluids flow with substantially identical flow speeds through the outlet channels (10, 20) and/or the inlet openings (13, 23). The invention furthermore relates to an externally mixing nozzle, a medical instrument and a medical device for spraying substances, in particular biological material.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: March 17, 2020
    Assignee: Erbe Elektromedizin GmbH
    Inventors: Andreas Fech, Klaus Fischer, Markus Enderle
  • Patent number: 10575891
    Abstract: The ablation system (10) according to the invention works with an ablation probe (12, 12a) that comprises two alternatingly working spark plasma electrodes (31, 32). They generate a plasma beam (47, 48) having a non-circular cross-section, which beam is to be guided—transversely with respect to the large longitudinal axis of its preferably oval cross-section—over the tissue to be ablated, in particular the mucosa (14). In doing so, it is possible to treat large-area tissue regions by means of a reliable and easily controllable procedure.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: March 3, 2020
    Assignee: Erbe Elektromedizin GmbH
    Inventors: Markus Enderle, Klaus Fischer, Thomas Stäbler