Patents by Inventor Klaus Friedrich

Klaus Friedrich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220123327
    Abstract: The present invention relates to hybrid gas diffusion layers for electrochemical cells, in particular for membrane electrode units in polymer electrolyte membrane (PEM) fuel cells and a method for manufacturing them.
    Type: Application
    Filed: November 28, 2019
    Publication date: April 21, 2022
    Inventors: Michael Ketzer, Klaus Friedrich Gleich
  • Publication number: 20220063217
    Abstract: According to one embodiment, a system for manufacturing a fully impregnated thermoplastic prepreg includes a mechanism for moving a fabric or mat and a drying mechanism that removes residual moisture from at least one surface of the fabric or mat. The system also includes a resin application mechanism that applies a reactive resin to the fabric or mat and a press mechanism that presses the coated fabric or mat to ensure that the resin fully saturates the fabric or mat. The system further includes a curing oven through which the coated fabric or mat is moved to polymerize the resin and thereby form a thermoplastic polymer so that upon exiting the oven, the fabric or mat is fully impregnated with the thermoplastic polymer. During at least a portion of the process, humidity in the vicinity of the coated fabric or mat is maintained at substantially zero.
    Type: Application
    Filed: November 11, 2021
    Publication date: March 3, 2022
    Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar, Derek Cooper Bristol, Christopher P Sandoval, Matthew Walp, Edwing Chapparo-Chavez, Stanislav O Kukatin, Albert Patrick Faulkinbury, Christopher McBride, Bradley Ray Lockwood
  • Patent number: 11231906
    Abstract: Embodiments of the present technology may include a method of making a thermoplastic composite concentrates. The method may include melting a low-viscosity reactive resin to form a molten reactive resin. The method may also include fully impregnating a plurality of continuous fibers with the molten reactive resin in an impregnation device. The method may further include polymerizing the molten reactive resin to form a thermoplastic composite strand. In addition, the method may include chopping the thermoplastic composite strand into a plurality of pellets to form a plurality of thermoplastic composite concentrates.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: January 25, 2022
    Assignee: Johns Manville
    Inventors: Mingfu Zhang, Asheber Yohannes, Michael Block, Klaus Friedrich Gleich, Daniel P De Kock, Jawed Asrar
  • Publication number: 20210397410
    Abstract: Embodiments of the present technology may include a method of making a thermoplastic composite concentrates. The method may include melting a low-viscosity reactive resin to form a molten reactive resin. The method may also include fully impregnating a plurality of continuous fibers with the molten reactive resin in an impregnation device. The method may further include polymerizing the molten reactive resin to form a thermoplastic composite strand. In addition, the method may include chopping the thermoplastic composite strand into a plurality of pellets to form a plurality of thermoplastic composite concentrates.
    Type: Application
    Filed: September 5, 2019
    Publication date: December 23, 2021
    Inventors: Mingfu Zhang, Asheber Yohannes, Michael Block, Klaus Friedrich Gleich, Daniel P De Kock, Jawed Asrar
  • Patent number: 11198259
    Abstract: According to one embodiment, a system for manufacturing a fully impregnated thermoplastic prepreg includes a mechanism for moving a fabric or mat and a drying mechanism that removes residual moisture from at least one surface of the fabric or mat. The system also includes a resin application mechanism that applies a reactive resin to the fabric or mat and a press mechanism that presses the coated fabric or mat to ensure that the resin fully saturates the fabric or mat. The system further includes a curing oven through which the coated fabric or mat is moved to polymerize the resin and thereby form a thermoplastic polymer so that upon exiting the oven, the fabric or mat is fully impregnated with the thermoplastic polymer. During at least a portion of the process, humidity in the vicinity of the coated fabric or mat is maintained at substantially zero.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: December 14, 2021
    Assignee: Johns Manville
    Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar, Derek Cooper Bristol, Christopher P Sandoval
  • Publication number: 20210277929
    Abstract: An assembly locking device adapted to a normalized standard or fine thread of a thread shaft of a thread bolt, so that the locking device is positionable in a loss-proof manner on the thread of the thread shaft. The locking device includes: a cylindrical turn comprised of a plurality of helically wound turns, of a wire, a transition turn and adjacent to the second end of the helix is a blocking turn which has a negative pitch PB compared to the holding turn, so that at least an end portion of the blocking turn is elastically displaceable in the axial direction of the central longitudinal axis between an insertion position and a blocking position. The end portion of the blocking turn forms the second end of the helix and in the blocking position is arranged radially outwardly of the transition turn and/or the holding turn.
    Type: Application
    Filed: March 3, 2021
    Publication date: September 9, 2021
    Inventors: Klaus-Friedrich Grubert, André Röhr, Helmut Schäfer, Rayk Gutsche
  • Patent number: 11091598
    Abstract: Fiber-containing polymethyl methacrylate (PMMA) prepregs are described that include a first and second plurality of fibers. The second plurality of fibers is made from a different material than the first plurality of fibers. The PMMA prepregs also contain a polymerized resin that includes polymethyl methacrylate that has been formed from a reactive resin composition that includes methyl methacrylate. Methods of making fiber-containing PMMA prepregs are also described.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: August 17, 2021
    Assignee: Johns Manville
    Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar, Derek Cooper Bristol, Christopher P Sandoval
  • Patent number: 11042764
    Abstract: A device for detecting vehicle lights in an image, the device is configured to receive an image captured by a camera, wherein the image comprises an array of pixels and each pixel of the image has a respective scene brightness value, compress the image to generate a compressed image, wherein the compressed image comprises an array of pixels and each pixel of the compressed image has a respective grey value, calculate for each grey value in the compressed image a corresponding scene brightness value in the image, and detect vehicle lights in the compressed image by using the calculated scene brightness values.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: June 22, 2021
    Assignee: Aptiv Technologies Limited
    Inventors: Monika Heift, Klaus Friedrichs, Andre Paus
  • Publication number: 20210139755
    Abstract: The invention relates to a new binder composition which is particularly suitable for the manufacture of composite materials utilizing such new binder composition in the required nonwoven materials. Composite materials using such new binder composition in their nonwoven part are suitable, in particular, for composites materials for interior construction, for linings, floor coverings, and for the manufacture of furniture and similar products.
    Type: Application
    Filed: January 20, 2021
    Publication date: May 13, 2021
    Inventors: Klaus Friedrich Gleich, Philip Francis Miele, Michael Ketzer
  • Patent number: 10954349
    Abstract: This invention relates to a process of making a fiber-reinforced composite. Glass fibers may be provided. These glass fibers may be treated with a sizing composition that has a coupling-activator compound with the formula: S—X-(A)n, where S represents a silicon-containing coupling moiety capable of bonding to the surface of glass fibers, X represents a linking moiety, and (A)n, represents one or more polymerization activator moieties. The treated glass fibers may be combined with a resin to make a fiber-resin mixture. The resin may have a monomer, a catalyst, and an activator compound capable of initiating a polymerization of the monomer. The monomer may be a lactam or lactone having 3-12 carbon atoms in the main ring. The fiber-resin mixture may then be cured so that the monomer polymerizes to form a thermoplastic polymer matrix of the fiber-reinforced composite. The thermoplastic polymer matrix may be formed by in situ polymerization initiated from both the surface of the glass fibers and the resin.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: March 23, 2021
    Assignee: Johns Manville
    Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar
  • Patent number: 10954421
    Abstract: The invention relates to a new binder composition which is particularly suitable for the manufacture of composite materials utilizing such new binder composition in the required nonwoven materials. Composite materials using such new binder composition in their nonwoven part are suitable, in particular, for composites materials for interior construction, for linings, floor coverings, and for the manufacture of furniture and similar products.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: March 23, 2021
    Assignee: Johns Manville
    Inventors: Klaus Friedrich Gleich, Philip Francis Miele, Michael Ketzer
  • Publication number: 20210060746
    Abstract: The installation tool for a wire thread insert includes: a drive unit which provides a switchable rotation movement between a first and a second direction, a mandrel body with a drive section for rotating the mandrel body and with a drive section for rotating the mandrel body and with a thread section onto which the wire thread insert can be screwed or rotated on, an installation blade as well as a torque clutch consisting of a form-fit and force-fit clutch upper and lower parts engaging each other, of which the upper part is connected with the drive unit in a torque-proof manner and the lower part is connected with the mandrel body in a torque-proof manner. With a decoupled relative rotation between the clutch parts, caused by exceeding a limit torque between the clutch parts, relative movement between the mandrel body and the installation blade can be generated.
    Type: Application
    Filed: December 21, 2018
    Publication date: March 4, 2021
    Inventors: Andreas Marxkors, Holger Thommes, Tobias Beyer, Maximilian Leinkenjost, Klemens Rucha, Alexej Butov, Marcel Purrio, Hermann Zimmermann, Klaus-Friedrich Grubert, Sascha Zavarol, Franz Lutz
  • Publication number: 20210033139
    Abstract: Wire thread insert consisting of a body with a plurality of helically wound windings, in which the plurality of helically wound windings comprises a first end winding and a second end winding which define the body at opposite axial ends, the first end winding has a first integral form-fitting means in a first end section and the second end winding has a second integral form-fitting means in a second end section, so that in an installed state of the wire thread insert a form-fit rotation-inhibiting connection with an adjacent component structure can be produced via the first and the second integral form-fitting means respectively.
    Type: Application
    Filed: November 20, 2018
    Publication date: February 4, 2021
    Applicant: Böllhoff Verbindungstechnik GmbH
    Inventors: Michael STUMPF, Marcel PURRIO, Theodor WENNIGES, Klaus-Friedrich GRUBERT, Alexej BUTOV, Anna-Katharina SCHREINER
  • Publication number: 20200368979
    Abstract: According to one embodiment, a system for manufacturing a polymethyl methacrylate (PMMA) prepreg includes a mechanism for continuously moving a fabric or mat and a resin application component that applies a methyl methacrylate (MMA) resin to the fabric or mat. The system also includes a press mechanism that presses the fabric or mat during the continuous movement subsequent to the application of the MMA resin to ensure that the MMA resin fully saturates the fabric or mat. The system further includes a curing oven through which the fabric or mat is continuously moved. The curing oven is maintained at a temperature of between 40° C. and 100° C. to polymerize the MMA resin and thereby form PMMA so that upon exiting the curing oven, the fabric or mat is fully impregnated with PMMA.
    Type: Application
    Filed: August 11, 2020
    Publication date: November 26, 2020
    Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar, Derek Cooper Bristol, Christopher P. Sandoval
  • Publication number: 20200299487
    Abstract: Methods of making fiber reinforced composite articles are described. The methods may include treating fibers with a sizing composition that includes a polymerization compound, and introducing the treated fibers to a pre-polymerized composition. The combination of the treated fibers and pre-polymerized composition may then undergo a temperature adjustment to a polymerization temperature at which the pre-polymerized composition polymerizes into a plastic around the fibers to form the fiber-reinforced composite article. Techniques for introducing the treated fibers to the pre-polymerized composition may include pultrusion, filament winding, reactive injection molding (RIM), structural reactive injection molding (SRIM), resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM), long fiber injection (LFI), sheet molding compound (SMC) molding, bulk molding compound (BMC) molding, a spray-up application, and/or a hand lay-up application, among other techniques.
    Type: Application
    Filed: May 5, 2020
    Publication date: September 24, 2020
    Inventors: Rajappa Tadepalli, Jawed Asrar, Klaus Friedrich Gleich, Kiarash Alavi
  • Patent number: 10780609
    Abstract: Methods of making prepregs are described. The methods include the steps of forming a fiber-containing substrate, and contacting the fiber-containing substrate with a resin mixture. The resin mixture may include polymer particles mixed in a liquid medium, and the polymer particles may be coated on the fiber-containing substrate to form a coated substrate. The liquid medium may be removed from the coated substrate to form the prepreg. The prepregs may be used to make fiber-reinforced articles.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: September 22, 2020
    Assignee: Jonhs Manville
    Inventors: Mingfu Zhang, Jawed Asrar, Klaus Friedrich Gleich, Asheber Yohannes
  • Patent number: 10773474
    Abstract: According to one embodiment, a system for manufacturing a polymethyl methacrylate (PMMA) prepreg includes a mechanism for continuously moving a fabric or mat and a resin application component that applies a methyl methacrylate (MMA) resin to the fabric or mat. The system also includes a press mechanism that presses the fabric or mat during the continuous movement subsequent to the application of the MMA resin to ensure that the MMA resin fully saturates the fabric or mat. The system further includes a curing oven through which the fabric or mat is continuously moved. The curing oven is maintained at a temperature of between 40° C. and 100° C. to polymerize the MMA resin and thereby form PMMA so that upon exiting the curing oven, the fabric or mat is fully impregnated with PMMA.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: September 15, 2020
    Assignee: Johns Manville
    Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar, Derek Cooper Bristol, Christopher P Sandoval
  • Patent number: 10766716
    Abstract: A container-handling device includes two rotors, holders that are arranged around a periphery of the first rotor and receptacles around the first rotor such that as it rotates, the receptacles pass through distinct angular ranges. When a receptacle has a container, relative movement therebetween causes its centering element and its counter-bearing to clamp a container between them with the holder engaging the container above the counter-bearing A first partial-stroke occurs while the receptacle is in a first angular region and a second partial-stroke occurs after the receptacle has left the first angular region. During the first partial-stroke, the centering element bears against a container's mouth with a pressure, and, during the second partial-stroke, this pressure increases.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: September 8, 2020
    Assignee: KHS GmbH
    Inventors: Andreas Ullrich, Klaus-Friedrich Stock
  • Publication number: 20200277460
    Abstract: Fiber-containing polymethyl methacrylate (PMMA) prepregs are described that include a first and second plurality of fibers. The second plurality of fibers is made from a different material than the first plurality of fibers. The PMMA prepregs also contain a polymerized resin that includes polymethyl methacrylate that has been formed from a reactive resin composition that includes methyl methacrylate. Methods of making fiber-containing PMMA prepregs are also described.
    Type: Application
    Filed: May 13, 2020
    Publication date: September 3, 2020
    Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar, Derek Cooper Bristol, Christopher P Sandoval
  • Patent number: 10730271
    Abstract: Methods of making prepregs are described. The methods include the steps of forming a fiber-containing substrate, and contacting the fiber-containing substrate with a resin mixture. The resin mixture may include polymer particles mixed in a liquid medium, and the polymer particles may be coated on the fiber-containing substrate to form a coated substrate. The liquid medium may be removed from the coated substrate to form the prepreg. The prepregs may be used to make fiber-reinforced articles.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: August 4, 2020
    Assignee: Johns Manville
    Inventors: Mingfu Zhang, Jawed Asrar, Klaus Friedrich Gleich, Asheber Yohannes