Patents by Inventor Klaus Hartkorn

Klaus Hartkorn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9513445
    Abstract: A compact optical splitter module is disclosed. One type of compact optical splitter module is a planar attenuated splitter module that includes a branching waveguide network having j?1 50:50 splitters that form up to n?2j output waveguides having associated n output ports, wherein only m<n output ports are suitable for transmitting light to the at least one external output device. This provides a 1×m splitter module wherein each output port has the attenuation of a 1×n splitter module, thereby obviating the need for external attenuation. Another type of compact optical splitter module is a direct-connect splitter module that eliminates the need for an optical fiber array when coupling to external optical fibers. Another type of compact optical splitter module is a microsplitter module that serves as device and module at the same time and that eliminates the differentiation between device and module. The integration of device and module also makes manufacturing the microsplitter module cost-effect.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: December 6, 2016
    Assignee: Corning Optical Communications LLC
    Inventors: Terry Dean Cox, Klaus Hartkorn, Angela Rief, Markus Melnelt, Wolfgang Schwelker
  • Publication number: 20160202417
    Abstract: A beam-shaping optical system suitable for use with optical coherence tomography includes a beam-shaping body having a beam-shaping element and an alignment feature. An optical fiber is coupled to the alignment feature. The fiber has a fiber end configured to emit an electromagnetic beam. The fiber and the body are configured to direct the beam into the beam-shaping element such that the beam is shaped solely by reflection into an image spot.
    Type: Application
    Filed: January 6, 2016
    Publication date: July 14, 2016
    Inventors: Venkata Adiseshaiah Bhagavatula, Klaus Hartkorn, Daniel Max Staloff
  • Publication number: 20160161672
    Abstract: Systems and methods for multiple-pass stripping of an optical fiber are disclosed. The method include irradiating a first portion of the coating with a first beam of radiation having a wavelength at which the coating is substantially transparent and an intensity that exceeds the optical-damage threshold of the coating to form a first damaged coating portion. The method also includes receiving at least a portion of the first radiation beam and redirecting it as a one or more redirected radiation beam to either the first portion of the coating to assist in forming the first damaged coating portion, or to one or more second portions of the coating to form one or more second damaged coating portions. The method additionally includes exposing a section of the central glass portion damaged portions of the coating.
    Type: Application
    Filed: December 5, 2014
    Publication date: June 9, 2016
    Inventors: Anthony Sebastian Bauco, Klaus Hartkorn, Daniel Max Staloff
  • Publication number: 20160120408
    Abstract: A non-cylindrical hypotube is disclosed, such as for use in OCT and endoscopy. The hypotube is defined by a non-cylindrical, rotationally symmetric tube and has an interior, a proximal-end section with an outer diameter D1, a distal-end section with an outer diameter D3, and a middle section between the proximal-end and distal-end sections and having an outer diameter D2, wherein D2<D1, and D2<D3. The distal-end section is sized to accommodate the optical probe and includes an outer surface with an aperture that allows for optical communication therethrough.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 5, 2016
    Inventors: Venkata Adiseshaiah Bhagavatula, Woraphat Dockchoorung, Klaus Hartkorn, Mark Alan McDermott, Stephen Quenton Smith
  • Publication number: 20150355413
    Abstract: Integrated torque jacket systems and methods for optical coherence tomography are disclosed. The system includes an optical fiber cable having an optical fiber surrounded by an outer jacket. An optical probe is operably attached to the distal end of the optical fiber cable. The optical fiber cable includes either a plurality of low-friction bearings or a spiral member operably attached thereto along its length, thereby defining the integrated torque jacket system. The integrated torque jacket system resides within the flexible guide tube with a close fit that allows for rotation and axial translation of the integrated torque jacket system within the guide tube interior. The integrated torque jacket system serves to transfer torque and axial translation applied at its proximal end to the distal end to rotate and axially translate the optical probe within the guide tube.
    Type: Application
    Filed: May 27, 2015
    Publication date: December 10, 2015
    Inventors: Venkata Adiseshaiah Bhagavatula, Theresa Chang, Klaus Hartkorn, Mark Alan McDermott, Stephen Quenton Smith
  • Patent number: 9194690
    Abstract: A torque transmission assembly comprising: (i) an optical fiber coupled to an optical sensing component and capable of rotating and translating the optical sensing component and of transmitting light to and from the optical sensing component; and (b) an annular structure surrounding the optical fiber, the annular structure in conjunction with said optical fiber transmits torque from a rotating component to the optical sensing component, wherein the annular structure does not include a steel wire torque spring.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: November 24, 2015
    Assignee: Corning Incorporated
    Inventors: Venkata Adiseshaiah Bhagavatula, Theresa Chang, Klaus Hartkorn, John Himmelreich
  • Publication number: 20150219854
    Abstract: Monolithic beam-shaping optical systems and methods are disclosed for an optical coherence tomography (OCT) probe that includes a transparent cylindrical housing having asymmetric optical power. The system includes a transparent monolithic body having a folded optical axis and at least one alignment feature that supports the end of an optical fiber adjacent an angled planar end wall. The monolithic body also includes a total-internal reflection surface and a lens surface that define object and image planes. Light from the optical fiber end traverses the optical path, which includes the cylindrical housing residing between the lens surface and the image plane. Either the lens surface by itself or the lens surface and the reflective (eg, TIR) surface in combination are configured to substantially correct for the asymmetric optical power of the cylindrical housing, thereby forming a substantially rotationally symmetric image spot at the image plane.
    Type: Application
    Filed: April 16, 2015
    Publication date: August 6, 2015
    Inventors: Venkata Adiseshaiah Bhagavatula, Klaus Hartkorn, Daniel Max Staloff
  • Publication number: 20150146211
    Abstract: A monolithic optical coherence tomography (OCT) probe is provided. The probe includes a first section having a groove, an optical fiber in the groove, and a second section having a reflective surface. The optical fiber is in optical communication with the reflective surface.
    Type: Application
    Filed: November 14, 2014
    Publication date: May 28, 2015
    Inventors: Venkata Adiseshaiah Bhagavatula, Klaus Hartkorn, Daniel Max Staloff
  • Patent number: 9036966
    Abstract: Monolithic beam-shaping optical systems and methods are disclosed for an optical coherence tomography (OCT) probe that includes a transparent cylindrical housing having asymmetric optical power. The system includes a transparent monolithic body having a folded optical axis and at least one alignment feature that supports the end of an optical fiber adjacent an angled planar end wall. The monolithic body also includes a total-internal reflection surface and a lens surface that define object and image planes. Light from the optical fiber end traverses the optical path, which includes the cylindrical housing residing between the lens surface and the image plane. Either the lens surface by itself or the lens surface and the reflective (eg, TIR) surface in combination are configured to substantially correct for the asymmetric optical power of the cylindrical housing, thereby forming a substantially rotationally symmetric image spot at the image plane.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 19, 2015
    Assignee: Corning Incorporated
    Inventors: Venkata Adiseshaiah Bhagavatula, Klaus Hartkorn, Daniel Max Staloff
  • Publication number: 20150025369
    Abstract: According to some embodiments a housing for the OCT comprises: (a) a tubular body with an inner diameter of less than 5 mm (for example less than 2 mm, and in some embodiments not greater than 1.5 mm), a first end, a second end; and a window formed in the tubular body closer to the second end than to the first end, displaced from the second end, and framed by a portion of the tubular body, wherein the window has a width w. According to some embodiments, 0.05 mm<w<8 mm.
    Type: Application
    Filed: June 24, 2014
    Publication date: January 22, 2015
    Inventors: Venkata Adiseshaiah Bhagavatula, John McKenna Brennan, Woraphat Dockchoorung, Klaus Hartkorn, Mark Alan McDermott, Amorn Runarom, Daniel Max Staloff
  • Publication number: 20140346693
    Abstract: Methods of forming a total-internal-reflection (TIR) optical fiber lens are disclosed. The methods include heating an end of an optical fiber with a defocused infrared laser beam to form a bulbous tip having a curved outer surface that defines a lens surface. The bulbous tip is laser cleaved to define a TIR facet. Light traveling in the fiber diverges at an effective fiber end and is reflected by the TIR facet through the lens surface to form an image at an image plane.
    Type: Application
    Filed: June 10, 2013
    Publication date: November 27, 2014
    Inventor: Klaus Hartkorn
  • Publication number: 20140247454
    Abstract: A torque transmission assembly comprising: (i) an optical fiber coupled to an optical sensing component and capable of rotating and translating the optical sensing component and of transmitting light to and from the optical sensing component; and (b) an annular structure surrounding the optical fiber, the annular structure in conjunction with said optical fiber transmits torque from a rotating component to the optical sensing component, wherein the annular structure does not include a steel wire torque spring.
    Type: Application
    Filed: February 18, 2014
    Publication date: September 4, 2014
    Applicant: Corning Incorporated
    Inventors: Venkata Adiseshaiah Bhagavatula, Theresa Chang, Klaus Hartkorn, John Himmelreich
  • Publication number: 20140247455
    Abstract: An OCT assembly comprising: (a) a light transmissive rod having a first end, a second end, and a central axis; and a refractive surface adjacent to the second end; (b) a housing surrounding the OCT probe component; the housing having a tubular body with the window situated over the refractive surface, said tubular body having a surface wherein said surface of said tubular body has a coefficient of friction being less than 0.3; (c) an optical fiber connected to the OCT probe component; (d) an annular structure surrounding said optical fiber and capable of translating and rotating the OCT probe component.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 4, 2014
    Applicant: Corning Incorporated
    Inventors: Venkata Adiseshaiah Bhagavatula, Theresa Chang, Klaus Hartkorn
  • Publication number: 20130266259
    Abstract: Monolithic beam-shaping optical systems and methods are disclosed for an optical coherence tomography (OCT) probe that includes a transparent cylindrical housing having asymmetric optical power. The system includes a transparent monolithic body having a folded optical axis and at least one alignment feature that supports the end of an optical fiber adjacent an angled planar end wall. The monolithic body also includes a total-internal reflection surface and a lens surface that define object and image planes. Light from the optical fiber end traverses the optical path, which includes the cylindrical housing residing between the lens surface and the image plane. Either the lens surface by itself or the lens surface and the reflective (eg, TIR) surface in combination are configured to substantially correct for the asymmetric optical power of the cylindrical housing, thereby forming a substantially rotationally symmetric image spot at the image plane.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 10, 2013
    Inventors: Venkata Adiseshaiah Bhagavatula, Klaus Hartkorn, Daniel Max Staloff
  • Publication number: 20120301073
    Abstract: Integrated silicon photonic active optical cable assemblies (ACOAs), as well as sub-assemblies and components for AOCAs, are disclosed. One component is a multifiber ferrule configured to support multiple optical fibers in a planar array. The multifiber ferrule is combined with a flat top to form a ferrule sub-assembly. Embodiments of a unitary fiber guide member that combines the features of the multifiber ferrule and the flat top is also disclosed. The ferrule sub-assembly or the fiber guide member is combined with a photonic light circuit (PLC) silicon substrate with transmitter and receiver units to form a PLC assembly. The PLC assembly is combined with a printed circuit board and an electrical connector to form an ACOA. An extendable cable assembly that utilizes at least one ACOA is also described.
    Type: Application
    Filed: April 5, 2012
    Publication date: November 29, 2012
    Inventors: Jeffery A. DeMeritt, Richard R. Grzybowski, Klaus Hartkorn, Brewster R. Hemenway, JR., Micah Colen Isenhour, Christopher Paul Lewallen, James Phillip Luther, James S. Sutherland
  • Publication number: 20100247038
    Abstract: A coupling device for coupling optical waveguides comprises a first side for coupling first optical waveguides to the coupling device, and a second side for coupling second optical waveguides to the coupling device, and an optical system arranged between the first and second sides of the coupling device. The optical system alters a beam path of light coupled out from the first optical waveguides and coupled into the coupling device at the first side in such a way that the light is coupled out from the coupling device at the second side and is coupled into the second optical waveguides, wherein the first optical waveguides are arranged spatially differently with respect to one another than the second optical waveguides.
    Type: Application
    Filed: June 11, 2010
    Publication date: September 30, 2010
    Inventor: Klaus Hartkorn
  • Publication number: 20100150501
    Abstract: A compact optical splitter module is disclosed. One type of compact optical splitter module is a planar attenuated splitter module that includes a branching waveguide network having j?1 50:50 splitters that form up to n?2j output waveguides having associated n output ports, wherein only m<n output ports are suitable for transmitting light to the at least one external output device. This provides a 1×m splitter module wherein each output port has the attenuation of a 1×n splitter module, thereby obviating the need for external attenuation. Another type of compact optical splitter module is a direct-connect splitter module that eliminates the need for an optical fiber array when coupling to external optical fibers. Another type of compact optical splitter module is a microsplitter module that serves as device and module at the same time and that eliminates the differentiation between device and module. The integration of device and module also makes manufacturing the microsplitter module cost-effect.
    Type: Application
    Filed: February 23, 2010
    Publication date: June 17, 2010
    Inventors: Terry Dean Cox, Klaus Hartkorn, Angela Rief, Markus Melnelt, Wolfgang Schwelker
  • Patent number: 7555176
    Abstract: An optical splitter has an optical chip, in which a conductor track is arranged on a carrier substrate, wherein a conductor track section of the conductor track running from a first side of the chip branches into different conductor track sections which run to a second side of the chip via a plurality of branching nodes. An optical waveguide section of an optical waveguide is bonded at the first side of the chip by means of an adhesive material. Correspondingly, optical waveguide sections are bonded on the second side of the chip by means of an adhesive material. In order to reinforce the fixing, glass plates are arranged over and under the optical waveguides, said glass plates being bonded to the optical chip at the respective lateral surfaces.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: June 30, 2009
    Assignee: CCS Technology, Inc.
    Inventors: Franz Draxler, Klaus Hartkorn, Markus Meinelt, Angela Rief, Wolfgang Schweiker
  • Publication number: 20090052842
    Abstract: An optical splitter has an optical chip, in which a conductor track is arranged on a carrier substrate, wherein a conductor track section of the conductor track running from a first side of the chip branches into different conductor track sections which run to a second side of the chip via a plurality of branching nodes. An optical waveguide section of an optical waveguide is bonded at the first side of the chip by means of an adhesive material. Correspondingly, optical waveguide sections are bonded on the second side of the chip by means of an adhesive material. In order to reinforce the fixing, glass plates are arranged over and under the optical waveguides, said glass plates being bonded to the optical chip at the respective lateral surfaces.
    Type: Application
    Filed: August 22, 2007
    Publication date: February 26, 2009
    Inventors: Franz Draxler, Klaus Hartkorn, Markus Meinelt, Angela Rief, Wolfgang Schweiker
  • Publication number: 20080298748
    Abstract: A compact optical splitter module is disclosed. One type of compact optical splitter module is a planar attenuated splitter module that includes a branching waveguide network having j?1 50:50 splitters that form up to n?2j output waveguides having associated n output ports, wherein only m<n output ports are suitable for transmitting light to the at least one external output device. This provides a 1×m splitter module wherein each output port has the attenuation of a 1×n splitter module, thereby obviating the need for external attenuation. Another type of compact optical splitter module is a direct-connect splitter module that eliminates the need for an optical fiber array when coupling to external optical fibers. Another type of compact optical splitter module is a microsplitter module that serves as device and module at the same time and that eliminates the differentiation between device and module. The integration of device and module also makes manufacturing the microsplitter module cost-effect.
    Type: Application
    Filed: May 31, 2007
    Publication date: December 4, 2008
    Inventors: Terry Dean Cox, Klaus Hartkorn, Markus Melnelt, Angela Rief, Wolfgang Schwelker