Patents by Inventor Klaus J. Kirchberg

Klaus J. Kirchberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11703373
    Abstract: For patient weight estimation in a medical imaging system, a patient model, such as a mesh, is fit to a depth image. One or more feature values are extracted from the fit patient model, reducing the noise and clutter in the values. The weight estimation is regressed from the extracted features.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: July 18, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Ruhan Sa, Birgi Tamersoy, Yao-jen Chang, Klaus J. Kirchberg, Vivek Kumar Singh, Terrence Chen
  • Patent number: 11107270
    Abstract: A method of deriving one or more medical scene model characteristics for use by one or more software applications is disclosed. The method includes receiving one or more sensor data streams. Each sensor data stream of the one or more sensor data steams includes position information relating to a medical scene. A medical scene model including a three-dimensional representation of a state of the medical scene is dynamically updated based on the one or more sensor data streams. Based on the medical scene model, the one or more medical scene model characteristics are derived.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: August 31, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Klaus J. Kirchberg, Vivek Kumar Singh, Terrence Chen
  • Publication number: 20200271507
    Abstract: For patient weight estimation in a medical imaging system, a patient model, such as a mesh, is fit to a depth image. One or more feature values are extracted from the fit patient model, reducing the noise and clutter in the values. The weight estimation is regressed from the extracted features.
    Type: Application
    Filed: February 25, 2019
    Publication date: August 27, 2020
    Inventors: Ruhan Sa, Birgi Tamersoy, Yao-jen Chang, Klaus J. Kirchberg, Vivek Kumar Singh, Terrence Chen
  • Patent number: 10748034
    Abstract: A method for training a learning-based medical scanner including (a) obtaining training data from demonstrations of scanning sequences, and (b) learning the medical scanner's control policies using deep reinforcement learning framework based on the training data.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: August 18, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Vivek Kumar Singh, Klaus J. Kirchberg, Kai Ma, Yao-jen Chang, Terrence Chen
  • Publication number: 20200051257
    Abstract: Imaging from sequential scans is aligned based on patient information. A three-dimensional distribution of a patient-related object or objects, such as an outer surface of the patient or an organ in the patient, is stored with any results (e.g., images and/or measurements). Rather than the entire scan volume, the three-dimensional distributions from the different scans are used to align between the scans. The alignment allows diagnostically useful comparison between the scans, such as guiding an imaging technician to more rapidly determine the location of a same lesion for size comparison.
    Type: Application
    Filed: August 8, 2018
    Publication date: February 13, 2020
    Inventors: Frank Sauer, Shelby Scott Brunke, Andrzej Milkowski, Ali Kamen, Ankur Kapoor, Mamadou Diallo, Terrence Chen, Klaus J. Kirchberg, Vivek Kumar Singh, Dorin Comaniciu
  • Publication number: 20190213442
    Abstract: A method for training a learning-based medical scanner including (a) obtaining training data from demonstrations of scanning sequences, and (b) learning the medical scanner's control policies using deep reinforcement learning framework based on the training data.
    Type: Application
    Filed: January 10, 2018
    Publication date: July 11, 2019
    Inventors: Vivek Kumar Singh, Klaus J. Kirchberg, Kai Ma, Yao-jen Chang, Terrence Chen
  • Publication number: 20190142358
    Abstract: A method for generating a nuclear image includes obtaining, via a camera, a surface image of a patient. A synthetic computed-tomography (CT) image of the patient is generated based on the surface image. First time-of-flight (TOF) data for the patient is obtained via a nuclear imaging modality. Attenuation correction is applied to the first TOF data. The synthetic image is applied as a density map during the attenuation correction. A nuclear image is generated from the attenuation corrected first TOF data.
    Type: Application
    Filed: November 13, 2017
    Publication date: May 16, 2019
    Inventors: Terrence Chen, Vivek Kumar Singh, Klaus J. Kirchberg, Vladimir Y. Panin, Dorin Comaniciu
  • Publication number: 20190139300
    Abstract: A method of deriving one or more medical scene model characteristics for use by one or more software applications is disclosed. The method includes receiving one or more sensor data streams. Each sensor data stream of the one or more sensor data steams includes position information relating to a medical scene. A medical scene model including a three-dimensional representation of a state of the medical scene is dynamically updated based on the one or more sensor data streams. Based on the medical scene model, the one or more medical scene model characteristics are derived.
    Type: Application
    Filed: November 7, 2018
    Publication date: May 9, 2019
    Inventors: Klaus J. Kirchberg, Vivek Kumar Singh, Terrence Chen
  • Patent number: 9186088
    Abstract: A method for device visualization includes receiving a set of physical characteristics including a description of spatial relationships of a plurality of markers within a device. Radiographic data of the device within a subject is acquired. An approximate location of each of the plurality of markers is identified within the radiographic data. A trajectory function is constructed for the device within the subject based on the identified approximate locations of each of the markers and the received set of physical characteristics. A section function is constructed for the device based on the set of physical characteristics and a 3D model is generated for the device based on the constructed trajectory function and the section function. A rendering of the 3D model is displayed on a display device.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: November 17, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Julien Christian Barbot, Klaus J. Kirchberg
  • Patent number: 8880149
    Abstract: Localization of a coil is provided for magnetic resonance (MR)-guided intervention. A multi-scale decomposition and characteristic transitions in the power spectra for the coil are used to determine a distribution of likelihood of the coil being at each of various locations and/or to determine a confidence in the position determination. For example, the power spectra along each axis is used to generate a likelihood distribution of the location of the coil. The power spectra are decomposited at different scales. For each scale, the modulus maxima reflecting transitions in the power spectra are matched using various criteria. A likelihood is calculated for each of the matched candidates from characterizations of the matched candidates. The likelihood distribution is determined from a combination of the likelihoods from the various scales.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: November 4, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Julien Christian Barbot, Sunil Goraksha Patil, Klaus J. Kirchberg, Steven M. Shea
  • Patent number: 8712115
    Abstract: In a method of real-time 3-D visualization and navigation for interventional procedures a position is determined at which data will be acquired, and data is acquired at the position. Features are extracted from the acquired data. A model described by the extracted features is built or updated, wherein updating the model includes calculating at least one acquisition parameter of a set of acquisition parameters. 3-D scenes showing the interior or exterior of one or more organs are displayed using the model or data extracted from the model. A region for updating is determined.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: April 29, 2014
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Klaus J. Kirchberg, Christine H. Lorenz
  • Patent number: 8428319
    Abstract: Automatic measurement of morphometric and motion parameters of a coronary target includes extracting reference frames from input data of a coronary target at different phases of a cardiac cycle, extracting a three-dimensional centerline model for each phase of the cardiac cycle based on the references frames and projection matrices of the coronary target, tracking a motion of the coronary target through the phases based on the three-dimensional centerline models, and determining a measurement of morphologic and motion parameters of the coronary target based on the motion.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: April 23, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Yanghai Tsin, Klaus J. Kirchberg, Günter Lauritsch, Chenyang Xu, Jan Boese, Rui Liao
  • Publication number: 20130083988
    Abstract: A method for device visualization includes receiving a set of physical characteristics including a description of spatial relationships of a plurality of markers within a device. Radiographic data of the device within a subject is acquired. An approximate location of each of the plurality of markers is identified within the radiographic data. A trajectory function is constructed for the device within the subject based on the identified approximate locations of each of the markers and the received set of physical characteristics. A section function is constructed for the device based on the set of physical characteristics and a 3D model is generated for the device based on the constructed trajectory function and the section function. A rendering of the 3D model is displayed on a display device.
    Type: Application
    Filed: September 12, 2012
    Publication date: April 4, 2013
    Applicant: Siemens Corporation
    Inventors: Julien Christian Barbot, Klaus J. Kirchberg
  • Publication number: 20120150025
    Abstract: A system receives an image volume of a patient. A catheter applied to the patient contains at least one sensor, which may be a microcoil and which is detectable in the image volume. A size and a shape of a region of interest are pre-defined. A processor determines a location of the at least one sensor in the image volume. The image volume is generated by a medical imaging device. The processor defines the shape and size of the region of interest relative to the location of the at least one sensor to determine the region of interest in the image volume. Image data of the region of interest in the image volume and of the region of interest in a previous image volume are registered. The region of interest is determined during an interventional procedure on the patient.
    Type: Application
    Filed: September 20, 2011
    Publication date: June 14, 2012
    Applicant: Siemens Corporation
    Inventors: Klaus J. Kirchberg, Rui Liao
  • Patent number: 8098917
    Abstract: A computer implemented method for automatically updating a geometric model of an object of interest includes determining, automatically, a region of the geometric model for updating according to a update parameter, acquiring data at the region, extracting features from the acquired data, updating the geometric model described by the extracted features, wherein updating the model includes calculating at least one acquisition parameter of a set of acquisition parameters, and displaying a scene showing the object of interest using the model.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: January 17, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Klaus J. Kirchberg, Christine H. Lorenz
  • Patent number: 8094909
    Abstract: Apparatus for remotely controlling parameters of an image scanning apparatus includes a software interface for translating commands from an external application for providing scanner control commands to a scanner control machine for control of the parameters; and the software interface includes syntax software for translating the commands from the external application into a given syntax for providing the scanner control commands.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: January 10, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Corinna Maier, Klaus J. Kirchberg, Peter Speier, Christine H. Lorenz
  • Patent number: 8064673
    Abstract: Progress monitoring of lesions is done automatically by segmentation and registration of lesions in multi-phase medical images. A parametric level-set framework includes a model optimization for any number of lesions. The user specifies lesions in a baseline volume by clicking inside of them. The apparatus segments the lesions automatically in the baseline and follow-up volumes. The segmentation optimization compensates for lesion motion between baseline and follow-up volumes. 2D and 3D medical patient data can be processed by the methods.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: November 22, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Klaus J. Kirchberg, Christoph Guetter
  • Publication number: 20110052035
    Abstract: A method (100) of blood vessel extraction for rotational angiographic X-ray sequences, comprising obtaining a 2.5D vesselness detection response in 3D (208). The method (100) utilizes the projection matrices to realize the correspondence among different image frames to extract low level image features for subsequent segmentation and 3D image reconstruction.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 3, 2011
    Applicant: Siemens Corporation
    Inventors: Klaus J. Kirchberg, Wai Kong (Max) Law, Chenyang Xu
  • Publication number: 20100272315
    Abstract: Automatic measurement of morphometric and motion parameters of a coronary target includes extracting reference frames from input data of a coronary target at different phases of a cardiac cycle, extracting a three-dimensional centerline model for each phase of the cardiac cycle based on the references frames and projection matrices of the coronary target, tracking a motion of the coronary target through the phases based on the three-dimensional centerline models, and determining a measurement of morphologic and motion parameters of the coronary target based on the motion.
    Type: Application
    Filed: April 21, 2010
    Publication date: October 28, 2010
    Applicant: Siemens Corporation
    Inventors: Yanghai Tsin, Klaus J. Kirchberg, Günter Lauritsch, Chenyang Xu, Jan Boese, Rui Liao
  • Publication number: 20090092304
    Abstract: Apparatus for remotely controlling parameters of an image scanning apparatus includes a software interface for translating commands from an external application for providing scanner control commands to a scanner control machine for control of the parameters; and the software interface includes syntax software for translating the commands from the external application into a given syntax for providing the scanner control commands.
    Type: Application
    Filed: September 10, 2008
    Publication date: April 9, 2009
    Applicant: Siemens Corporate Research, Inc.
    Inventors: Corinna Maier, Klaus J. Kirchberg, Peter Speier, Christine H. Lorenz