Patents by Inventor Klaus Körner

Klaus Körner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11566998
    Abstract: Fourier Transformation Spectrometer, FT Spectrometer, comprising: Michelson-Type Interferometer (601, 602, 603, 604, 605, 606, 607, 608, 609) comprising: at least one beam splitter unit designed to split an incident light beam (EB) of a spatially expanded object into a first partial beam (TB1) and a second partial beam (TB2); and for at least partially overlaying the first partial beam (TB1) and the second partial beam (TB2) with a lateral shear (s); a first beam deflection unit designed to deflect the first partial beam (TB1) at least once; a second beam deflection unit designed to deflect the second partial beam (TB2) at least once; wherein at least one among the first beam deflection unit and the second beam deflection unit represents a (2n+1) periscope group with (2n+1) mirror surfaces, and all (2n+1) mirror surfaces are arranged vertically in relation to a common reference plane, in order to respectively deflect the first partial beam (TB1) and/or the second partial beam (TB2) (2n+1) times, and wherein t
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: January 31, 2023
    Assignee: Universität Stuttgart
    Inventors: Klaus Körner, Alois M. Herkommer
  • Patent number: 11530982
    Abstract: Fourier Transformation Spectrometer, FT Spectrometer, comprising: A double beam interferometer, comprising: At least one beam splitter unit (622; 623; 624, 625, 626, 627; 636; 673, 674, 675) for splitting an incident light beam (EB) of a spatially expanded object into a first partial beam (TB1) and a second partial beam (TB2); at least a first beam deflection unit (630; 641; 651; 661; 697) designed to deflect the first partial beam (TB1) at least a first and a second time, wherein the second beam deflection unit (630) is designed to also deflect the second partial beam (TB2) at least at first and a second time; or the double beam interferometer comprises a second beam deflection unit (642; 652; 662) designed to deflect the second partial beam (TB2) at least a first and a second time, wherein the beam deflection unit is also designed to at least partially spatially overlay the first partial beam (TB1) and the second partial beam (TB2), and the respectively first and second deflection of the first partial beam
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: December 20, 2022
    Inventors: Klaus Körner, Alois M. Herkommer
  • Patent number: 11248900
    Abstract: The present invention relates to a method and an assembly for chromatic confocal spectral interferometery, in particular also for spectral domain OCT (SD-OCT) using multi-spectral light. A multiple (e.g. two, three, four, etc.) axial splitting of foci in the interferometric object arm is performed using a multifocal (e.g. bifocal, trifocal, quattro-focal, etc.) optical component, forming thereby at least two, three or even several groups of chromatically split foci in the depth direction. The multifocal optical component is made of a diffractive optical element (712) and a Schwarzschild objective (5). At least two, three, four or even more differently colored foci of different groups of foci coincide in at least one confocal point in the object space of the setup.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: February 15, 2022
    Assignee: Universität Stuttgart
    Inventors: Klaus Körner, Daniel Claus, Alois Herkommer, Christof Pruss
  • Patent number: 11231269
    Abstract: The present invention relates to an arrangement and a method for single-shot interferometry which can be used for detecting distance, profile, shape, undulation, roughness or the optical path length in or on optically rough or smooth objects or else for optical coherence tomography (OCT). The arrangement comprises a light source, an interferometer, in which an end reflector is arranged in the reference beam path, and also a detector for detecting an interferogram. In the reference beam path of the interferometer, the end reflector can be embodied with three plane reflecting surfaces as a prism mirror or air mirror assembly in order to generate between reference and object beams a lateral shear of magnitude delta_q for obtaining a spatial interferogram. The embodiment of said assembly with regard to the angles and the arrangement of the reflecting surfaces makes possible a large aperture angle for a high numerical aperture.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: January 25, 2022
    Assignee: Universität Stuttgart
    Inventors: Klaus Körner, Wolfgang Osten
  • Publication number: 20210310938
    Abstract: Fourier Transformation Spectrometer, FT Spectrometer, comprising: A double beam interferometer, comprising: At least one beam splitter unit (622; 623; 624, 625, 626, 627; 636; 673, 674, 675) for splitting an incident light beam (EB) of a spatially expanded object into a first partial beam (TB1) and a second partial beam (TB2); at least a first beam deflection unit (630; 641; 651; 661; 697) designed to deflect the first partial beam (TB1) at least a first and a second time, wherein the second beam deflection unit (630) is designed to also deflect the second partial beam (TB2) at least at first and a second time; or the double beam interferometer comprises a second beam deflection unit (642; 652; 662) designed to deflect the second partial beam (TB2) at least a first and a second time, wherein the beam deflection unit is also designed to at least partially spatially overlay the first partial beam (TB1) and the second partial beam (TB2), and the respectively first and second deflection of the first partial beam
    Type: Application
    Filed: March 30, 2021
    Publication date: October 7, 2021
    Inventors: Klaus KÖRNER, Alois M. HERKOMMER
  • Publication number: 20210310937
    Abstract: Fourier Transformation Spectrometer, FT Spectrometer, comprising: Michelson-Type Interferometer (601, 602, 603, 604, 605, 606, 607, 608, 609) comprising: at least one beam splitter unit designed to split an incident light beam (EB) of a spatially expanded object into a first partial beam (TB1) and a second partial beam (TB2); and for at least partially overlaying the first partial beam (TB1) and the second partial beam (TB2) with a lateral shear (s); a first beam deflection unit designed to deflect the first partial beam (TB1) at least once; a second beam deflection unit designed to deflect the second partial beam (TB2) at least once; wherein at least one among the first beam deflection unit and the second beam deflection unit represents a (2n+1) periscope group with (2n+1) mirror surfaces, and all (2n+1) mirror surfaces are arranged vertically in relation to a common reference plane, in order to respectively deflect the first partial beam (TB1) and/or the second partial beam (TB2) (2n+1) times, and wherein t
    Type: Application
    Filed: March 30, 2021
    Publication date: October 7, 2021
    Inventors: Klaus KÖRNER, Alois M. HERKOMMER
  • Publication number: 20200408505
    Abstract: The present invention relates to an arrangement and a method for single-shot interferometry which can be used for detecting distance, profile, shape, undulation, roughness or the optical path length in or on optically rough or smooth objects or else for optical coherence tomography (OCT). The arrangement comprises a light source, an interferometer, in which an end reflector is arranged in the reference beam path, and also a detector for detecting an interferogram. In the reference beam path of the interferometer, the end reflector can be embodied with three plane reflecting surfaces as a prism mirror or air mirror assembly in order to generate between reference and object beams a lateral shear of magnitude delta_q for obtaining a spatial interferogram. The embodiment of said assembly with regard to the angles and the arrangement of the reflecting surfaces makes possible a large aperture angle for a high numerical aperture.
    Type: Application
    Filed: December 7, 2017
    Publication date: December 31, 2020
    Applicant: Universität Stuttgart
    Inventors: Klaus Körner, Wolfgang Osten
  • Patent number: 10866088
    Abstract: Proposed are an arrangement and a method for depth-scanning strip triangulation with internal or external depth scan, particularly also for the 3D shape measurement in microscopy and mesoscopy. The robustness of the measurement with wavelet signal generation from an image stack is to be increased. The occurrence of the known and very undesirable 2Pi phase jumps in the phase map is to be avoided as much as possible. To do this, with a measurement instead of a wavelet at least two wavelets with contrast envelope are generated. This is done by a concurrent—then preferably with spectral separation—or by a sequential projection of two strip images with different triangulation wavelengths on the measured object.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: December 15, 2020
    Assignee: Universität Stuttgart
    Inventor: Klaus Körner
  • Publication number: 20200378743
    Abstract: The present invention relayes to a method and an assembly for chromatic confocal spectral interferometery, in particular also for spectral domain OCT (SD-OCT) using multi-spectral light. A multiple (e.g. two, three, four, etc.) axial splitting of foci in the interferometric object arm is performed using a multifocal (e.g. bifocal, trifocal, quattro-focal, etc.) optical component, forming thereby at least two, three or even several groups of chromatically split foci in the depth direction. The multifocal optical component is made of a diffractive optical element (712) and a Schwarzschild objective (5). At least two, three, four or even more differently colored foci of different groups of foci coincide in at least one confocal point in the object space of the setup.
    Type: Application
    Filed: December 18, 2017
    Publication date: December 3, 2020
    Inventors: Klaus KÖRNER, Daniel CLAUS, Alois HERKOMMER, Christof PRUSS
  • Publication number: 20200141722
    Abstract: Proposed are an arrangement and a method for depth-scanning strip triangulation with internal or external depth scan, particularly also for the 3D shape measurement in microscopy and mesoscopy. The robustness of the measurement with wavelet signal generation from an image stack is to be increased. The occurrence of the known and very undesirable 2Pi phase jumps in the phase map is to be avoided as much as possible. To do this, with a measurement instead of a wavelet at least two wavelets with contrast envelope are generated. This is done by a concurrent—then preferably with spectral separation—or by a sequential projection of two strip images with different triangulation wavelengths on the measured object.
    Type: Application
    Filed: April 16, 2018
    Publication date: May 7, 2020
    Inventor: Klaus KÖRNER
  • Patent number: 10481020
    Abstract: The present invention relates to a method and an apparatus for establishing residual stresses in objects, in particular in coated objects, and to a method and an apparatus for coating objects. The method comprises: impinging a surface (8) of the object (5) with laser light and generating a hole or a pattern of holes and/or locally heated points in the object (5); establishing the surface deformations by an optical deforming measuring method after the object (5) is impinged by laser light; establishing the residual stresses present in the object (5) from the measured surface deformations, wherein the generation of the hole pattern is carried out by an optical scanning apparatus which comprises an optical deflection and/or modulation arrangement for controllable deflection and/or modulation of the laser light, and/or a focusing arrangement for controllable focusing of the laser light.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: November 19, 2019
    Assignee: Universität Stuttgart
    Inventors: Wolfgang Osten, Giancarlo Pedrini, Rainer Gadow, Klaus Körner
  • Patent number: 10066997
    Abstract: The invention relates to methods and to devices for generating multispectral illuminating light having an addressable spectrum, for adaptive multispectral imaging and for capturing structural and/or topographical information of an object or of the distance to an object. The illuminating device comprises a multispectral light source and a modulator for temporal modulation of the individual spectral components of the multispectral light source having modulation frequencies. The multispectral light source comprises at least one light source having a continuous, quasi-continuous, or frequency comb spectrum and wavelength-dispersive means, or an assembly or array of monochromatic or quasi-monochromatic light sources having emission wavelengths or emission wavelength bands which are different from one another in each case.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: September 4, 2018
    Assignee: Universität Stuttgart
    Inventors: Klaus Körner, Wolfgang Osten, Tobias Boettcher, Wolfram Lyda, Marc Gronle
  • Publication number: 20180202872
    Abstract: The present invention relates to a method and an apparatus for establishing residual stresses in objects, in particular in coated objects, and to a method and an apparatus for coating objects. The method comprises: impinging a surface (8) of the object (5) with laser light and generating a hole or a pattern of holes and/or locally heated points in the object (5); establishing the surface deformations by an optical deforming measuring method after the object (5) is impinged by laser light; establishing the residual stresses present in the object (5) from the measured surface deformations, wherein the generation of the hole pattern is carried out by an optical scanning apparatus which comprises an optical deflection and/or modulation arrangement for controllable deflection and/or modulation of the laser light, and/or a focusing arrangement for controllable focusing of the laser light.
    Type: Application
    Filed: May 20, 2016
    Publication date: July 19, 2018
    Applicant: Universität Stuttgart
    Inventors: Wolfgang Osten, Giancarlo Pedrini, Rainer Gadow, Klaus Körner
  • Patent number: 9772275
    Abstract: Disclosed herein is a measuring probe and an arrangement for measuring spectral absorption, preferably in the infrared. Furthermore, the invention relates to a method for spectroscopically measuring absorption. The measuring probe may comprise a cutting apparatus configured to cut a slice or respectively flap off of a sample to be measured; a measuring gap configured to accommodate the sample slice; an optical window element for coupling measuring light into, or respectively out of the measuring gap; and an end reflector designed and arranged to reflect the measuring light propagated through the measuring gap back into the measuring gap. The arrangement for measuring spectral absorption may comprise the measuring probe, a light source and an apparatus for the spectral analysis of the measuring light coupled out of the measuring gap.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: September 26, 2017
    Assignee: Universität Stuttgart
    Inventors: Klaus Koerner, Christof Pruss, Alois Herkommer, Wolfgang Osten, Daniel Claus
  • Patent number: 9739594
    Abstract: Disclosed are methods and an assembly for robust one-shot interferometry, in particular for optical coherence tomography according to the spatial domain approach (SD-OCT) and/or according to the light-field approach. In one embodiment, the method and the assembly may be used for measurements on material and living tissue, for distance measurement, for 2D or 3D measurement with a finely structured light source imaged onto the object in a diffraction-limited way, or with spots thereof. The assembly may comprise an interferometer having object and reference arms and a detector for electromagnetic radiation. In other embodiments, during a detection process, a plurality of spatial interferograms may be formed by making an inclined and/or curved reference wavefront interfere with an object wavefront for each measurement point. The resulting spatial interferograms may be detected in a single detector frame and may be further evaluated via a computer program.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: August 22, 2017
    Assignee: Universität Stuttgart
    Inventors: Klaus Koerner, Wolfgang Osten
  • Publication number: 20170059408
    Abstract: The invention relates to methods and to devices for generating multispectral illuminating light having an addressable spectrum, for adaptive multispectral imaging and for capturing structural and/or topographical information of an object or of the distance to an object. The illuminating device comprises a multispectral light source and a modulator for temporal modulation of the individual spectral components of the multispectral light source having modulation frequencies. The multispectral light source comprises at least one light source having a continuous, quasi-continuous, or frequency comb spectrum and wavelength-dispersive means, or an assembly or array of monochromatic or quasi-monochromatic light sources having emission wavelengths or emission wavelength bands which are different from one another in each case.
    Type: Application
    Filed: February 17, 2015
    Publication date: March 2, 2017
    Inventors: Klaus Körner, Wolfgang Osten, Tobias Boettcher, Wolfram Lyda, Marc Gronle
  • Patent number: 9383306
    Abstract: Disclosed herein is an apparatus for spectroscopic ellipsometry, preferably for infrared spectroscopic ellipsometry, and a method for spectroscopic ellipsometry employing the apparatus. In some embodiments, the apparatus may comprise a light source (12), a detector (30), a polarizer (40), an analyzer (41), and a measuring probe (10). In one embodiment, the measuring probe may comprise an ATR prism (50) having at least one first surface having at least one measuring portion (M) configured to be brought in optical contact with a measured object (72), and at least one second surface having at least one reflective portion (RX).
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: July 5, 2016
    Assignee: Universität Stuttgart
    Inventors: Klaus Koerner, Arnulf Roeseler, Daniel Claus, Wolfgang Osten
  • Publication number: 20160146722
    Abstract: Disclosed herein is an apparatus for spectroscopic ellipsometry, preferably for infrared spectroscopic ellipsometry, and a method for spectroscopic ellipsometry employing the apparatus. In some embodiments, the apparatus may comprise a light source (12), a detector (30), a polarizer (40), an analyzer (41), and a measuring probe (10). In one embodiment, the measuring probe may comprise an ATR prism (50) having at least one first surface having at least one measuring portion (M) configured to be brought in optical contact with a measured object (72), and at least one second surface having at least one reflective portion (RX).
    Type: Application
    Filed: November 10, 2015
    Publication date: May 26, 2016
    Inventors: Klaus Koerner, Arnulf Roeseler, Daniel Claus, Wolfgang Osten
  • Publication number: 20160143539
    Abstract: Disclosed herein is a measuring probe, an apparatus, and a method for infrared spectroscopy. In some embodiments the measuring probe may have an elongated form with a first end for coupling and decoupling infrared light into and out of the measuring probe and a second end. In other embodiments, the measuring probe may comprise an attenuated total reflection (ATR) prism arranged at the second end of the measuring probe. The ATR prism may include at least a first surface having at least one measuring portion configured to be brought in optical contact with a measured object. The ATR prism may include at least a second surface having at least one reflective portion. In some embodiments, the ATR prism may include a cutting portion for cutting through the measured object.
    Type: Application
    Filed: November 9, 2015
    Publication date: May 26, 2016
    Inventors: Klaus Koerner, Daniel Claus, Alois Herkommer, Wolfgang Osten
  • Publication number: 20160076997
    Abstract: Disclosed herein is a measuring probe and an arrangement for measuring spectral absorption, preferably in the infrared. Furthermore, the present disclosure relates to a method for spectroscopically measuring absorption. In some embodiments, the measuring probe may comprise a cutting apparatus configured to cut a slice or respectively flap off of a sample to be measured; a measuring gap configured to accommodate the sample slice; an optical window element for coupling measuring light into, or respectively out of the measuring gap; and an end reflector designed and arranged to reflect the measuring light propagated through the measuring gap back into the measuring gap. The arrangement for measuring spectral absorption may comprise the measuring probe, a light source and an apparatus for the spectral analysis of the measuring light coupled out of the measuring gap.
    Type: Application
    Filed: August 31, 2015
    Publication date: March 17, 2016
    Inventors: Klaus Koerner, Christof Pruss, Alois Herkommer, Wolfgang Osten, Daniel Claus