Patents by Inventor Klaus Knop

Klaus Knop has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11236950
    Abstract: A method for operating a regenerative heat storage arrangement, wherein the heat storage arrangement has a gas heater for heating a carrier gas; a heat storage row with multiple heat storage modules; and at least one compressor. During a loading cycle, carrier gas heated in the gas heater flows through at least one heat reservoir module, which is thermally charged by the transfer of heat from the heated carrier gas to a heat storage material of the heat reservoir module. The carrier gas is cooled during the charging process. If, after the charging of a heat reservoir module, the carrier gas temperature reaches or exceeds a minimum charging temperature for a subsequent heat reservoir module, the carrier gas is fed to the subsequent heat reservoir module for charging. The carrier gas is recirculated back to the gas heater if the carrier gas temperature falls below the minimum charging temperature.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: February 1, 2022
    Assignee: Carbon-Clean Technologies GmbH
    Inventor: Klaus Knop
  • Publication number: 20210123689
    Abstract: A method for operating a regenerative heat storage arrangement, wherein the heat reservoir storage arrangement has a gas heater for heating a carrier gas; a heat storage row with multiple heat storage modules; and at least one compressor. During a loading cycle, carrier gas heated in the gas heater flows through at least one heat reservoir module, which is thermally charged by the transfer of heat from the heated carrier gas to a heat storage material of the heat reservoir module. The carrier gas is cooled during the charging process. If, after the charging of a heat reservoir module, the carrier gas temperature reaches or exceeds a minimum charging temperature for a subsequent heat reservoir module, the carrier gas is fed to the subsequent heat reservoir module for charging. The carrier gas is recirculated back to the gas heater if the carrier gas temperature falls below the minimum charging temperature.
    Type: Application
    Filed: April 16, 2019
    Publication date: April 29, 2021
    Applicant: Carbon-Clean Technologies GmbH
    Inventor: Klaus Knop
  • Patent number: 10941676
    Abstract: Disclosed is a method for rapidly and flexibly adapting the output of a steam-turbine power station (1), preferably for adapting the output to altered network loads, more preferably for providing a positive and/or negative network operating reserve as required, and especially preferably for providing a primary operating reserve and/or a secondary operating reserve. According to the invention, heat released during the discharge of at least one electrically chargeable thermal store (6) is coupled into a feedwater heater section (3) of the power station (1).
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: March 9, 2021
    Assignee: Carbon-Clean Technologies GmbH
    Inventors: Robert Joseph Pfab, Lars Zoellner, Klaus Knop
  • Publication number: 20200182093
    Abstract: Disclosed is a method for rapidly and flexibly adapting the output of a steam-turbine power station (1), preferably for adapting the output to altered network loads, more preferably for providing a positive and/or negative network operating reserve as required, and especially preferably for providing a primary operating reserve and/or a secondary operating reserve. According to the invention, heat released during the discharge of at least one electrically chargeable thermal store (6) is coupled into a feedwater heater section (3) of the power station (1).
    Type: Application
    Filed: June 21, 2017
    Publication date: June 11, 2020
    Inventors: Robert JOSEPH, Lars ZOELLNER, Klaus KNOP
  • Patent number: 10309258
    Abstract: A method is presented and described for compensating load peaks during the generating of electrical energy and/or for the generating of electrical energy by utilizing the heat of heated carrier gas (2) for the electricity generation, and/or for the utilization of the heat of heated carrier gas (2) for hydrogen generation, comprising the steps: heating of carrier gas (2), especially hot air, in at least one gas heater (4a-d), wherein hot carrier gas (2) with a specified target charge temperature exits from the gas heater (4a-d), thermal charging of at least one heat storage module (5a-d) of a plurality of heat storage modules (5a-d) of the storage power station (1) by releasing heat from the hot carrier gas (2) from the gas heater (4a-d) to a heat storage material of the heat storage module (5a-d), time-delayed thermal discharge of at least one heat storage module (5a-d), preferably of a plurality of heat storage modules (5a-d), wherein colder carrier gas (2), especially cold air, flows through at least one
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: June 4, 2019
    Assignee: CARBON-CLEAN TECHNOLOGIES GMBH
    Inventors: Klaus Knop, Robert Joseph Pfab, Lars Zoellner
  • Patent number: 9771822
    Abstract: A method is provided for carbon-dioxide-neutral compensation for current level fluctuations in an electrical power supply system as a result of peaks and troughs in the generation of electrical energy. When a generation peak occurs, electrical energy produced from a regenerative energy source is used in an electrolysis unit for hydrogen generation. A hydrogen flow generated in the electrolysis unit is supplied to a reactor unit that catalytically generates an energy-carrier flow containing hydrocarbon. In a generation trough, the produced energy-carrier flow is burned in a combustion chamber. The thermal energy of the flue-gas flow formed by the combustion is used to generate electrical energy in a turbine process. The generated electrical energy is fed into the electrical power supply system. The flue-gas flow is supplied to the reactor unit as a carbon source for generation of the energy-carrier flow.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: September 26, 2017
    Assignee: Carbon-Clean Technologies AG
    Inventors: Klaus Knop, Lars Zoellner
  • Publication number: 20170241296
    Abstract: A method is presented and described for compensating load peaks during the generating of electrical energy and/or for the generating of electrical energy by utilizing the heat of heated carrier gas (2) for the electricity generation, and/or for the utilization of the heat of heated carrier gas (2) for hydrogen generation, comprising the steps: heating of carrier gas (2), especially hot air, in at least one gas heater (4a-d), wherein hot carrier gas (2) with a specified target charge temperature exits from the gas heater (4a-d), thermal charging of at least one heat storage module (5a-d) of a plurality of heat storage modules (5a-d) of the storage power station (1) by releasing heat from the hot carrier gas (2) from the gas heater (4a-d) to a heat storage material of the heat storage module (5a-d), time-delayed thermal discharge of at least one heat storage module (5a-d), preferably of a plurality of heat storage modules (5a-d), wherein colder carrier gas (2), especially cold air, flows through at least one
    Type: Application
    Filed: October 16, 2015
    Publication date: August 24, 2017
    Inventors: Klaus KNOP, Robert Joseph PFAB, Lars ZOELLNER
  • Patent number: 9539176
    Abstract: The present invention relates to manufacturing processes for the preparation of a pharmaceutical dosage form comprising nifedipine and candesartan cilexetil and optionally at least one diuretic characterized in that nifedipine is released in the body in a controlled (modified) manner and the candesartan cilexetil is released rapidly (immediate release (IR)) and optionally the diuretic is released rapidly (immediate release (IR)) and the pharmaceutical dosage forms obtainable by these processes.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: January 10, 2017
    Assignee: Bayer Pharma Aktiengesellschaft
    Inventors: Adrian Funke, Günter Meyer, Martina Smikalla, Andreas Meeners, Markus Wirges, Daniela Brock, Sarah Just, Peter Kleinebudde, Klaus Knop, Jochen Axel Zeitler, Rolf-Anton Boeggering
  • Patent number: 8709128
    Abstract: The present invention relates to a process for the direct reduction of iron ore performed by means of a plant comprising a gravitational furnace (2) having at least one iron ore reduction zone (8) in the upper part thereof, and at least one carbon deposition zone (9) and one reduced metal product cooling zone (10) in the lower part thereof, and means for feeding a reducing gas mixture into the reactor in correspondence to the with the reduction zone, means for recycle exhaust or reactor off gas from the reactor to syngas and mixing the recycled gas with natural gas to form a reducing gas mixture.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: April 29, 2014
    Assignee: Luossavaara-Kiirunavaara AB
    Inventors: Klaus Knop, Sten Ångström
  • Publication number: 20130214542
    Abstract: A method is provided for carbon-dioxide-neutral compensation for current level fluctuations in an electrical power supply system as a result of peaks and troughs in the generation of electrical energy. When a generation peak occurs, electrical energy produced from a regenerative energy source is used in an electrolysis unit for hydrogen generation. A hydrogen flow generated in the electrolysis unit is supplied to a reactor unit that catalytically generates an energy-carrier flow containing hydrocarbon. In a generation trough, the produced energy-carrier flow is burned in a combustion chamber. The thermal energy of the flue-gas flow formed by the combustion is used to generate electrical energy in a turbine process. The generated electrical energy is fed into the electrical power supply system. The flue-gas flow is supplied to the reactor unit as a carbon source for generation of the energy-carrier flow.
    Type: Application
    Filed: September 2, 2011
    Publication date: August 22, 2013
    Applicant: CARBON-CLEAN TECHNOLOGIES AG
    Inventors: Klaus Knop, Lars Zoellner
  • Publication number: 20110247457
    Abstract: The present invention relates to a process for the direct reduction of iron ore performed by means of a plant comprising a gravitational furnace (2) having at least one iron ore reduction zone (8) in the upper part thereof, and at least one carbon deposition zone (9) and one reduced metal product cooling zone (10) in the lower part thereof, and means for feeding a reducing gas mixture into the reactor in correspondence to the with the reduction zone, means for recycle exhaust or reactor off gas from the reactor to syngas and mixing the recycled gas with natural gas to form a reducing gas mixture.
    Type: Application
    Filed: September 22, 2009
    Publication date: October 13, 2011
    Applicant: LUOSSAVAARA-KIIRUNAVAARA AB
    Inventors: Klaus Knop, Sten Ångström
  • Patent number: 6136065
    Abstract: A method and device are provided for direct reduction of ore fines in a wide range of particle size, the reducing agent being hydrogen placed in a fluidized bed gutter with a plurality of sequentially arranged chambers. The fluidization rate in the supply base is set so that a defined class of particle size remains in the chamber concerned where it will be submitted to a reduction process and that the finest particle size fraction is discharged from the chamber, then precipitated in a hot gas cyclone to solid material (or fines) and gas. The ore fines precipitated in the cyclone then reaches the following chamber. The gas from all the hot gas cyclones is fed by a collector to the pre-heater. After reduction in the chambers, the ore fines are conveyed in pressure vessels for submission to further processes.
    Type: Grant
    Filed: October 5, 1998
    Date of Patent: October 24, 2000
    Assignee: Ferrostaal Aktiengesellschaft
    Inventors: Peter Heinrich, Klaus Knop
  • Patent number: 5545251
    Abstract: The present invention concerns a method of and a device for directly reducing fine-particle ore in a horizontal reactor with an ore-reducing gas and a heat vehicle, also a gas, in a fluidized bed.The ore-reducing vessel itself comprises a horizontal fluidized-bed reactor (1). The ore (F) is blown into it from below. The heated ore-reducing gas (A) is blown into the reactor through oncoming-gas floors (2). The heat needed for the endothermic reaction is supplied to the reactor at different temperatures through heat exchangers (3) and transferred to the bed. Heat is supplied counter to the ore-reducing gas.Fuel (B) in the form of gas is burned with air (C) to make the heat vehicle (D). The ore-reducing gas (A') is heated in downstream heat exchangers (5.1 to 5.3) before arriving in the three sections (1a, 1b, & 1c) of the reactor through the floors.Sponge iron (6) is removed and throat gas (E) extracted from a sponge-collecting section (1d).
    Type: Grant
    Filed: August 5, 1994
    Date of Patent: August 13, 1996
    Assignee: MAN Gutehoffnungsh utte Aktiengesellschaft
    Inventor: Klaus Knop
  • Patent number: 5439491
    Abstract: Apparatus is disclosed for the allothermic gasification of coal with steam. The gasifier is horizontally arranged with heat exchange tubes in separate gasification and pyrolysis zones so that a heat exchange medium is used in both zones.
    Type: Grant
    Filed: April 21, 1994
    Date of Patent: August 8, 1995
    Assignee: Bergwerksverband GmbH
    Inventors: Helmut Kubiak, Hans J. Schroter, Gunther Gappa, Heinrich Kalwitzki, Klaus Knop
  • Patent number: 5346515
    Abstract: Apparatus is disclosed for the allothermic gasification of coal with steam. The gasifier is vertically arranged with heat exchange tubes in separate gasification and pyrolysis zones so that a heat exchange medium is used in both zones.
    Type: Grant
    Filed: October 19, 1992
    Date of Patent: September 13, 1994
    Assignee: Bergwerksverband GmbH
    Inventors: Helmut Kubiak, Hans J. Schroter, Gunther Gappa, Heinrich Kalwitzki, Klaus Knop
  • Patent number: 5064444
    Abstract: A process is disclosed for allothermic gasification of coal under pressure with water vapor in a gas generator containing heat-exchange tubes for a heat transfer medium. The hot heat transfer medium that enters the gas generator by the heat-exchange tubes is first introduced in the gasification zone, then in the pyrolysis zone. The coal to be gasified flows counter-currently through the gas generator, so that the current of cooled heat transfer medium is used for heating and pyrolyzing the coal, whereas the heat for gasification is taken from the current of the still hot heat transfer medium. Gas generators vertically or horizontally arranged with fitting designs are used for implementation of the process.
    Type: Grant
    Filed: May 19, 1989
    Date of Patent: November 12, 1991
    Assignee: Bergwerksverband GmbH
    Inventors: Helmut Kubiak, Hans J. Schroter, Gunther Gappa, Heinrich Kalwitzki, Klaus Knop
  • Patent number: 4976611
    Abstract: In a method for the thermal treatment of wastes (combustible, poorly combustible and incombustible), especially those which cannot be harmlessly dumped, air is preheated in a first regenerator (2) to a temperature of 800.degree. to 1200.degree. C. and fed through a first combustion chamber (7) to a melting vessel (6) into which wastes are dumped for thermal treatment. The flue gas from the melting vessel is fed through a second combustion chamber (7') to a second regenerator (2'). The two regenerators contain sections for thermal storage (3, 3'), for the adsorption (4, 4') of flue gas impurities and for the further treatment (5, 5') of the flue gas. The air and flue gas flow is reversible, i.e., air preheated in the second regenerator (2') is fed to the melting vessel (6) through the second combustion chamber (7'). The flue gas is fed through the first combustion chamber (7) to the first regenerator (2).
    Type: Grant
    Filed: October 2, 1989
    Date of Patent: December 11, 1990
    Assignee: MAN Gutehoffnungshutte
    Inventors: Klaus Knop, Gunter Wolters
  • Patent number: 4852996
    Abstract: Part of the synthesis gas produced by coal gasification in an allothermically heated fluidized bed reactor is burned after removal of dust and sulfur and serves as a source of energy to heat the reactor by indirect heat exchange and to produce the steam required for the gasification process. The flue gas exiting from the heat exchanger of the reactor can be used to perform work in expansion turbines. The rest of the synthesis gas is available for use in downstream processes, such as iron ore reduction, or can be burned and used to perform work in turbines to produce electric current. The result is a process that is environmentally safer and operates with a better yield than direct coal burning or autothermal coal gasification, but requires no outside source of energy, such as nuclear power, as prior art allothermal coal gasification processes do.
    Type: Grant
    Filed: May 21, 1986
    Date of Patent: August 1, 1989
    Assignee: Man Gutehoffnungshuette GmbH
    Inventors: Klaus Knop, Gunter Wolters, Helmut Kubiak
  • Patent number: 4756722
    Abstract: Part of the synthesis gas produced by coal gasification in an allothermically heated fluidized bed reactor is burned after removal of dust and sulfur and serves as a source of energy to heat the reactor by indirect heat exchange and to produce the steam required for the gasification process. The flue gas exiting from the heat exchanger of the reactor can be used to perform work in expansion turbines. The rest of the synthesis gas is available for use in downstream processes, such as iron ore reduction, or can be burned and used to perform work in turbines to produce electric current. The result is a process that is environmentally safer and operates with a better yield than direct coal burning or autothermal coal gasification, but requires no outside source of energy, such as nuclear power, as prior art allothermal coal gasification processes do.
    Type: Grant
    Filed: March 10, 1987
    Date of Patent: July 12, 1988
    Assignee: M.A.N. GHH
    Inventors: Klaus Knop, Gunter Wolters, Helmut Kubiak
  • Patent number: 4678480
    Abstract: A process for producing a synthesis gas containing methane and using a reactor having a fuel containing carbon comprises directing gasification gases in a circulation system through a bed of fuel containing carbon to form a synthesis gas containing methane and carbon dioxide. Thereafter, the synthesis gas is cooled in a regenerator and subjected to the gas separation wherein the syngas is subjected to a gas cleansing by means of a pressure change absorption in a gas scrubber to remove most of the methane and carbon dioxide and its water content is increased. The separated gas is then heated and subsequently the portion is returned into the system together with the waste gases and fuel containing carbon. The process includes a 4-pole heater which includes the first heat exchange passage for the syngas which is cooled and a second heat exchange passage for the recirculation of the syngas and is further cooled and passed through a scrubber.
    Type: Grant
    Filed: October 23, 1985
    Date of Patent: July 7, 1987
    Assignee: M.A.N. Maschinenfabrik Augsburg-Nurnberg AG
    Inventors: Peter Heinrich, Klaus Knop, Friedbert Rube