Patents by Inventor Klaus NÖLKER

Klaus NÖLKER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11958744
    Abstract: An apparatus for producing ammonia or hydrogen may include a) a gas stream feed conduit having a connecting conduit to a steam reformer with a waste heat section; b) a heat exchanger downstream of the gas stream feed conduit; c) a gas stream preheater downstream of the heat exchanger; d) a recirculation conduit which is located downstream of the gas stream preheater and leads to the gas stream feed conduit or, upstream of the heat exchanger, to the connecting conduit; and e) the steam reformer with the waste heat section, where the waste heat section may be in thermal contact with the gas stream preheater and the flow of the gas stream which has been heated in the gas stream preheater through the recirculation conduit can be regulated. A process for producing ammonia or hydrogen may employ such an apparatus.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: April 16, 2024
    Assignees: thyssenkrupp Uhde GmbH, thyssenkrupp AG
    Inventors: Sebastian Sigge, Klaus Nölker, Steffen Jahn
  • Patent number: 11939226
    Abstract: An ammonia plant having a first and second reactor and a start-up oven having at least one first heat exchanger. The first reactor operates under a higher internal pressure than the second reactor. The start-up oven is connected via a piping system for at least one synthesis gas to the first and second reactor. Ammonia is produced by heating synthesis gas in the start-up oven and transferring the heated synthesis gas to the first reactor for initiating the chemical reaction. Synthesis gas is heated with the same start-up oven and is transferred to the second reactor for initiating the chemical reaction, wherein high-pressure synthesis of ammonia occurs in the first reactor and low-pressure synthesis of ammonia occurs in the second reactor at a lower process pressure than in the first reactor.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: March 26, 2024
    Assignees: thyssenkrupp Uhde GmbH, thyssenkrupp AG
    Inventors: Maximilian Schaaf, Dirk Meurer, Klaus Nölker
  • Publication number: 20230044089
    Abstract: An apparatus for steam reforming includes a reactor, a condensate separator, a condensate stripper, and a steam boiler. The reactor produces hydrogen and is connected to the condensate separator such that a gas mixture is conducted from the reactor into the condensate separator. The condensate separator and the condensate stripper are connected so that condensate separated out in the condensate separator is conducted into the condensate stripper. The condensate separator and the steam boiler are connected such that cleaned condensate can be conducted into the steam boiler. The steam boiler is connected to the reactor and to the condensate stripper in a steam-conducting manner. The boiler water feed line of the steam boiler is connectable to the condensate stripper in a liquid-conducting manner. A supply from the boiler water feed line is at a same location of the condensate stripper as a supply of the condensate from the condensate separator.
    Type: Application
    Filed: August 4, 2022
    Publication date: February 9, 2023
    Applicants: thyssenkrupp Industrial Solutions AG, thyssenkrupp AG
    Inventors: Christoph MEISSNER, Michael LANGANKI, Bernd MIELKE, Klaus NOELKER, Lukas KUBASCH
  • Publication number: 20220241747
    Abstract: A method can be utilized to startup into a normal operating state a steam reformer arrangement for the production of hydrogen, methanol, or ammonia. A plurality of burners that are coupled to at least one reactor having reformer tubes may be controlled and regulated. In particular, startup may be performed out and regulated in an automated manner by the burners ensuring normal operation, in particular non-startup burners, being ignited indirectly as a function of temperature by means of burners provided specifically for startup, in particular pilot burners and startup burners, as a function of automatically evaluated flame monitoring at least at the pilot burners. This method provides time savings and savings of outlay in terms of personnel and also high operational reliability.
    Type: Application
    Filed: July 8, 2020
    Publication date: August 4, 2022
    Applicants: thyssenkrupp Industrial Solutions AG, thyssenkrupp AG
    Inventors: Marco SCHOLZ, Ernst SICHTERMANN, Thorsten BRAKHANE, Klaus NÖLKER
  • Publication number: 20220023775
    Abstract: A method of removing inert gas dissolved in liquid ammonia involves evaporating, compressing, and then condensing the liquid ammonia together with the inert gas dissolved therein. Thereby, a product stream of warm liquid ammonia that has been freed of the inert gas is obtained, which is under elevated pressure relative to standard pressure and hence suitable for immediate use in methods in which pure liquid pressurized ammonia is required. If, by contrast, the ammonia is cooled first, for example, below the boiling temperature for ammonia and expanded to standard pressure to store it in tanks as liquid ammonia at low temperatures, it is necessary first to reheat and compress it for further processing operations. Thus the disclosed methods lead to significant energy savings.
    Type: Application
    Filed: September 13, 2019
    Publication date: January 27, 2022
    Applicants: thyssenkrupp Industrial Solutions AG, thyssenkrupp AG
    Inventor: Klaus NÖLKER
  • Publication number: 20210276863
    Abstract: An apparatus for producing ammonia or hydrogen may include a) a gas stream feed conduit having a connecting conduit to a steam reformer with a waste heat section; b) a heat exchanger downstream of the gas stream feed conduit; c) a gas stream preheater downstream of the heat exchanger; d) a recirculation conduit which is located downstream of the gas stream preheater and leads to the gas stream feed conduit or, upstream of the heat exchanger, to the connecting conduit; and e) the steam reformer with the waste heat section, where the waste heat section may be in thermal contact with the gas stream preheater and the flow of the gas stream which has been heated in the gas stream preheater through the recirculation conduit can be regulated. A process for producing ammonia or hydrogen may employ such an apparatus.
    Type: Application
    Filed: July 18, 2019
    Publication date: September 9, 2021
    Applicants: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG, thyssenkrupp AG
    Inventors: Sebastian SIGGE, Klaus NÖLKER, Steffen JAHN
  • Publication number: 20210261424
    Abstract: Systems and methods for the synthesis of ammonia includes a reformer; a carbon monoxide converter; a carbon dioxide scrubber unit with recovery; a methanation unit; and an ammonia synthesis unit; wherein the carbon dioxide scrubber unit with recovery is connected to at least one fired auxiliary steam boiler.
    Type: Application
    Filed: June 24, 2019
    Publication date: August 26, 2021
    Applicants: thyssenkrupp Industrial Solutions AG, thyssenkrupp AG
    Inventors: Bernd Mielke, Klaus Nölker
  • Publication number: 20210254774
    Abstract: A reformer for steam reforming a hydrocarbon-containing mixture, including a combustion chamber, a burner arranged within the combustion chamber, a first reactor tube which is arranged at least in sections within the combustion chamber, a catalyst arranged inside the first reactor tube, and an electrically heatable heating element is arranged inside the first reactor tube.
    Type: Application
    Filed: June 25, 2019
    Publication date: August 19, 2021
    Applicants: thyssenkrupp Industrial Solutions AG, thyssenkrupp AG
    Inventors: Martin MAI, Klaus NÖLKER, Bernd KEIL, Tarek EL HAWARY
  • Publication number: 20210107801
    Abstract: An ammonia plant having a first and second reactor and a start-up oven having at least one first heat exchanger. The first reactor operates under a higher internal pressure than the second reactor. The start-up oven is connected via a piping system for at least one synthesis gas to the first and second reactor. Ammonia is produced by heating synthesis gas in the start-up oven and transferring the heated synthesis gas to the first reactor for initiating the chemical reaction. Synthesis gas is heated with the same start-up oven and is transferred to the second reactor for initiating the chemical reaction, wherein high-pressure synthesis of ammonia occurs in the first reactor and low-pressure synthesis of ammonia occurs in the second reactor at a lower process pressure than in the first reactor.
    Type: Application
    Filed: April 15, 2019
    Publication date: April 15, 2021
    Applicants: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG, thyssenkrupp AG
    Inventors: Maximilian SCHAAF, Dirk MEURER, Klaus NÖLKER
  • Patent number: 10618817
    Abstract: A method and device for producing ammonia from a syngas in a heterogeneous gas catalysis process in at least two reaction devices connected in series. Each reaction device includes at least two catalyst beds through which the syngas is conducted and in which an at least partial conversion of the syngas into the product gas is carried out. At least one first heat exchanger is provided in the first reaction device, and the fresh syngas is pre-heated in the first heat exchanger. The syngas exiting the first catalyst bed and which includes the product and non-converted reactants is cooled before entering the second catalyst bed. According to an embodiment of the invention, the pre-heating process is carried out in a first heat exchanger arranged between the first and the second catalyst bed. Thus, synthesis conversion can be increased without substantially increasing the process gas quantity.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: April 14, 2020
    Assignees: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG, THYSSENKRUPP AG
    Inventors: Christoph Meissner, Andreas Kinner, Klaus Nölker, Reinhard Heun
  • Publication number: 20200039831
    Abstract: A process and a device for the production of ammonia at different pressure levels may involve removing gases that are inert (inert gases) or harmful with regard to ammonia synthesis from the process in a process step before the ammonia synthesis so that enrichment of these is decreased or suppressed. For example, with respect to a gas mixture that includes hydrogen, nitrogen, water, methane, carbon monoxide, and carbon dioxide, at least part of the water, at least part of the methane, at least part of the carbon monoxide, and at least part of the carbon dioxide may be removed from the gas mixture before the synthesis of the ammonia occurs.
    Type: Application
    Filed: June 9, 2016
    Publication date: February 6, 2020
    Applicants: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG, thyssenkrupp AG
    Inventors: Evgeni GORVAL, Reinhard HEUN, Joachim JOHANNING, Klaus NÖLKER
  • Publication number: 20190106330
    Abstract: A method and device for producing ammonia from a syngas in a heterogeneous gas catalysis process in at least two reaction devices connected in series. Each reaction device includes at least two catalyst beds through which the syngas is conducted and in which an at least partial conversion of the syngas into the product gas is carried out. At least one first heat exchanger is provided in the first reaction device, and the fresh syngas is pre-heated in the first heat exchanger. The syngas exiting the first catalyst bed and which includes the product and non-converted reactants is cooled before entering the second catalyst bed. According to an embodiment of the invention, the pre-heating process is carried out in a first heat exchanger arranged between the first and the second catalyst bed. Thus, synthesis conversion can be increased without substantially increasing the process gas quantity.
    Type: Application
    Filed: April 13, 2017
    Publication date: April 11, 2019
    Applicants: thyssenkrupp Industrial Solutions AG, thyssenkrupp AG
    Inventors: Christoph MEISSNER, Andreas KINNER, Klaus NÖLKER, Reinhard HEUN