Patents by Inventor Klaus-Peter Rued

Klaus-Peter Rued has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10001083
    Abstract: A turbofan aircraft engine having a primary duct (C), including a combustion chamber (BK), a first turbine (HT) disposed downstream of the combustion chamber, a compressor (HC) disposed upstream of the combustion chamber and coupled (W1) to the first turbine, and a second turbine (L) disposed downstream of the first turbine and coupled (W2) via a speed reduction mechanism (G) to a fan (F) for feeding a secondary duct (B) of the turbofan aircraft engine. A square of a ratio of a maximum blade diameter (DF) of the fan to a maximum blade diameter (DL) of the second turbine is at least 3.5, in particular at least 4.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: June 19, 2018
    Assignee: MTU Aero Engines AG
    Inventors: Klaus Peter Rued, Werner Humhauser, Hermann Klingels, Rudolf Stanka, Eckart Heinrich, Hans-Peter Hackenberg, Stefan Weber, Claus Riegler, Erich Steinhardt, Jochen Gier, Manfred Feldmann, Norbert Huebner, Karl Maar
  • Publication number: 20170159609
    Abstract: The invention relates to a turbofan aircraft engine that comprises a primary duct including a combustion chamber; a first turbine disposed downstream of the combustion chamber; a compressor disposed upstream of the combustion chamber and coupled to the first turbine; and a second turbine disposed downstream of the first turbine and coupled to a fan for feeding a secondary duct of the turbofan aircraft engine. The bypass ratio of the inlet area of the secondary duct to the inlet area of the primary duct is at least 7 and the second turbine comprises at least two stages. The mean outer radius of the last stage of the second turbine divided by the length of the second turbine is at least 1.4.
    Type: Application
    Filed: April 5, 2016
    Publication date: June 8, 2017
    Inventors: Carsten SCHOENHOFF, Rudolf STANKA, Erich STEINHARDT, Claus RIEGLER, Stephen Royston WILLIAMS, Hans-Peter HACKENBERG, Eckart HENRICH, Stefan WEBER, Klaus Peter RUED, Hermann KLINGELS, Patrick WACKERS, Christoph BICHLMAIER, Stefan BUSAM, Matthias KROBOTH, Norbert HUEBNER
  • Publication number: 20170159573
    Abstract: The invention relates to a turbofan aircraft engine that comprises a primary duct including a combustion chamber; a first turbine disposed downstream of the combustion chamber; a compressor disposed upstream of the combustion chamber and coupled to the first turbine; and a second turbine disposed downstream of the first turbine and coupled to a fan for feeding a secondary duct of the turbofan aircraft engine. The bypass ratio of the inlet area of the secondary duct to the inlet area of the primary duct is at least 7 and the second turbine comprises at least two stages. For the first stage the mean radius r of a stator vane expressed in inch divided by the number of stator vanes is at least 0.18.
    Type: Application
    Filed: April 5, 2016
    Publication date: June 8, 2017
    Inventors: Carsten SCHOENHOFF, Rudolf STANKA, Erich STEINHARDT, Claus RIEGLER, Stephen Royston WILLIAMS, Hans-Peter HACKENBERG, Eckart HENRICH, Stefan WEBER, Klaus Peter RUED, Hermann KLINGELS, Patrick WACKERS, Christoph BICHLMAIER, Stefan BUSAM, Matthias KROBOTH, Norbert HUEBNER
  • Publication number: 20160032826
    Abstract: A turbofan aircraft engine has at least one stage pressure ratio is at least 1.5, and a quotient of the total blade count divided by 110 is less than a difference ([(p1/p2)?1]) of the total pressure ratio minus one, and the total pressure ratio is greater than 4.5, and the turbine has at least two and no more than five turbine stages; and/or a product (An2) of an exit area (AL) of the second turbine and a square of a rotational speed of the second turbine at the design point is at least 4.5·1010 [in2·rpm2], and a blade tip velocity (uTIP) of at least one turbine stage of the second turbine at the design point is at least 400 meters per second. A jet and method are also provided.
    Type: Application
    Filed: August 4, 2014
    Publication date: February 4, 2016
    Inventors: Klaus Peter Rued, Werner Humhauser, Hermann Klingels, Rudolf Stanka, Eckart Heinrich, Hans-Peter Hackenberg, Claus Riegler, Erich Steinhardt, Jochen Gier, Manfred Feldmann, Norbert Huebner, Karl Maar, Stefan Weber
  • Publication number: 20160017797
    Abstract: A turbofan aircraft engine having a primary duct (C), including a combustion chamber (BK), a first turbine (HT) disposed downstream of the combustion chamber, a compressor (HC) disposed upstream of the combustion chamber and coupled (W1) to the first turbine, and a second turbine (L) disposed downstream of the first turbine and coupled (W2) via a speed reduction mechanism (G) to a fan (F) for feeding a secondary duct (B) of the turbofan aircraft engine. A square of a ratio of a maximum blade diameter (DF) of the fan to a maximum blade diameter (DL) of the second turbine is at least 3.5, in particular at least 4.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 21, 2016
    Inventors: Klaus Peter RUED, Werner Humhauser, Hermann Klingels, Rudolf Stanka, Eckart Heinrich, Hans-Peter Hackenberg, Stefan Weber, Claus Rieger, Erich Steinhardt, Jochen Gier, Manfred Feldmann, Norbert Huebner, Karl Maar
  • Patent number: 7306433
    Abstract: A rotor of a turbine-type machine, in particular a gas turbine rotor, is disclosed. The rotor has a rotor base body, where the rotor base body has a groove extending in the circumferential direction of the rotor base body, and has multiple rotor blades, or rotor blade segments, or an integrally bladed, circumferentially closed rotor blade ring. The rotor blades, or rotor blade segments, or rotor blade ring are/is anchored in the groove extending in the circumferential direction of the rotor base body by a blade base or ring base. The groove has a profiled groove wall leg on only one side, with the blade base of the rotor blades or the rotor blade segments, or ring base of the rotor blade ring, being in contact with the profiled groove wall leg with a correspondingly profiled supporting flank.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: December 11, 2007
    Assignee: MTU Aero Engines GmbH
    Inventors: Hermann Klingels, Klaus-Peter Rued
  • Patent number: 7284959
    Abstract: A rotor of a turbine-type machine, in particular a gas turbine rotor, is disclosed. The rotor has a rotor base body, where the rotor base body has a groove extending in the circumferential direction of the rotor base body, and has multiple rotor blades or rotor blade segments. The rotor blades or rotor blade segments are each anchored in the groove extending in the circumferential direction of the rotor base body by a blade base. The groove has a profiled groove wall leg on only one side, with the blade base of the rotor blades or the rotor blade segments being in contact with the profiled groove wall leg with a correspondingly profiled supporting flank.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: October 23, 2007
    Assignee: MTU Aero Engines GmbH
    Inventors: Hermann Klingels, Klaus-Peter Rued
  • Publication number: 20070059181
    Abstract: A rotor of a turbine-type machine, in particular a gas turbine rotor, is disclosed. The rotor has a rotor base body, where the rotor base body has a groove extending in the circumferential direction of the rotor base body, and has multiple rotor blades, or rotor blade segments, or an integrally bladed, circumferentially closed rotor blade ring. The rotor blades, or rotor blade segments, or rotor blade ring are/is anchored in the groove extending in the circumferential direction of the rotor base body by a blade base or ring base. The groove has a profiled groove wall leg on only one side, with the blade base of the rotor blades or the rotor blade segments, or ring base of the rotor blade ring, being in contact with the profiled groove wall leg with a correspondingly profiled supporting flank.
    Type: Application
    Filed: April 28, 2006
    Publication date: March 15, 2007
    Applicant: MTU Aero Engines GmbH
    Inventors: Hermann Klingels, Klaus-Peter Rued
  • Publication number: 20060188376
    Abstract: A rotor of a turbine-type machine, in particular a gas turbine rotor, is disclosed. The rotor has a rotor base body, where the rotor base body has a groove extending in the circumferential direction of the rotor base body, and has multiple rotor blades or rotor blade segments. The rotor blades or rotor blade segments are each anchored in the groove extending in the circumferential direction of the rotor base body by a blade base. The groove has a profiled groove wall leg on only one side, with the blade base of the rotor blades or the rotor blade segments being in contact with the profiled groove wall leg with a correspondingly profiled supporting flank.
    Type: Application
    Filed: January 25, 2006
    Publication date: August 24, 2006
    Inventors: Hermann Klingels, Klaus-Peter Rued