Patents by Inventor Klaus-Peter Stengele

Klaus-Peter Stengele has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230332223
    Abstract: Molecules may be analyzed (e.g., sequencing of nucleic acid molecules) by tunneling recognition at a tunneling junction. Embodiments of the present invention may allow detecting individual nucleotides and the sequencing of a nucleic acid molecule using a tunneling junction. By labeling a specific nucleotide with a moiety, tunneling junctions may generate a signal with a suitable signal-to-noise ratio. The tunneling recognition uses a tunneling current that is mostly through the moiety rather than mostly through the nucleotide or a portion of the molecule of interest. Because a single nucleotide can be detected with a signal with a suitable signal-to-noise ratio resulting from the tunneling current passing through the moiety, embodiments of the present invention may allow for fast detection of nucleotides using a tunneling current.
    Type: Application
    Filed: June 26, 2023
    Publication date: October 19, 2023
    Inventors: Yann ASTIER, Juraj TOPOLANCIK, Hannes KUCHELMEISTER, Frank BERGMANN, Dieter HEINDL, Nikolaus Klaus-Peter STENGELE
  • Patent number: 11718870
    Abstract: Molecules may be analyzed (e.g., sequencing of nucleic acid molecules) by tunneling recognition at a tunneling junction. Embodiments of the present invention may allow detecting individual nucleotides and the sequencing of a nucleic acid molecule using a tunneling junction. By labeling a specific nucleotide with a moiety, tunneling junctions may generate a signal with a suitable signal-to-noise ratio. The tunneling recognition uses a tunneling current that is mostly through the moiety rather than mostly through the nucleotide or a portion of the molecule of interest. Because a single nucleotide can be detected with a signal with a suitable signal-to-noise ratio resulting from the tunneling current passing through the moiety, embodiments of the present invention may allow for fast detection of nucleotides using a tunneling current.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: August 8, 2023
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Yann Astier, Juraj Topolancik, Hannes Kuchelmeister, Frank Bergmann, Dieter Heindl, Nikolaus Klaus-Peter Stengele
  • Patent number: 11001602
    Abstract: The present disclosure relates to photoactivable protecting groups containing a diarylsulfide chromophore, a method for the synthesis thereof and their use as photoactivable protecting groups using maskless photolithography based array synthesis.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: May 11, 2021
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Klaus-Peter Stengele
  • Publication number: 20190112328
    Abstract: The present disclosure relates to photoactivable protecting groups containing a diarylsulfide chromophore, a method for the synthesis thereof and their use as photoactivable protecting groups using maskless photolithography based array synthesis.
    Type: Application
    Filed: October 26, 2018
    Publication date: April 18, 2019
    Inventor: Klaus-Peter Stengele
  • Patent number: 10150791
    Abstract: The present disclosure relates to photoactivable protecting groups containing a diarylsulfide chromophore, a method for the synthesis thereof and their use as photoactivable protecting groups using maskless photolithography based array synthesis.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: December 11, 2018
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Klaus-Peter Stengele
  • Patent number: 9790243
    Abstract: The present description refers to photocleavable compounds which can be used as a photocleavable linker in order to link two biomolecules, such as oligonucleotides and peptides. The present description further refers to a method for the synthesis of said photocleavable compounds.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: October 17, 2017
    Assignee: Ventana Medical Systems, Inc.
    Inventor: Klaus-Peter Stengele
  • Publication number: 20170145047
    Abstract: The present disclosure relates to photoactivable protecting groups containing a diarylsulfide chromophore, a method for the synthesis thereof and their use as photoactivable protecting groups using maskless photolithography based array synthesis.
    Type: Application
    Filed: February 6, 2017
    Publication date: May 25, 2017
    Inventor: Klaus-Peter Stengele
  • Patent number: 9346892
    Abstract: An oligopeptide microarray and methods for the synthesis thereof are presented. Further presented is a microarray on a solid support comprising at least about 10,000 oligopeptide features per cm2 and preferably at least about 50,000 oligopeptide features per cm2.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: May 24, 2016
    Assignee: ROCHE NIMBLE GEN, INC.
    Inventors: Tom Albert, Todd Richmond, Matthew Rodesch, Klaus-Peter Stengele, Jochen Buehler, Markus Ott
  • Publication number: 20160060286
    Abstract: The present disclosure relates to photoactivable protecting groups containing a diarylsulfide chromophore, a method for the synthesis thereof and their use as photoactivable protecting groups using maskless photolithography based array synthesis.
    Type: Application
    Filed: November 9, 2015
    Publication date: March 3, 2016
    Inventor: Klaus-Peter Stengele
  • Publication number: 20150377898
    Abstract: The present invention relates to a microarray comprising at least 50,000 oligopeptide features per cm2 where the oligopeptide features represent at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99%, or 100% of the proteome of a virus or an organism. The present invention further relates to methods for the synthesis of such microarrays and methods of using microarrays comprising at least 50,000 oligopeptide features per cm2. In an embodiment of the invention, the oligopeptide features represent proteins expressed in the same species, wherein the oligopeptide features are presented in a tiling pattern representing at least about 5,000, at least about 10,000, at least about 15,000, at least about 20,000, or at least about 25,000 proteins expressed in a species.
    Type: Application
    Filed: August 27, 2014
    Publication date: December 31, 2015
    Inventors: Tom Albert, Todd Richmond, Matthew Rodesch, Klaus-Peter Stengele, Jochen Buehler
  • Publication number: 20150284415
    Abstract: The present description refers to photocleavable compounds which can be used as a photocleavable linker in order to link two biomolecules, such as oligonucleotides and peptides. The present description further refers to a method for the synthesis of said photocleavable compounds.
    Type: Application
    Filed: September 27, 2013
    Publication date: October 8, 2015
    Inventor: Klaus-Peter Stengele
  • Patent number: 8658572
    Abstract: The present invention relates to a microarray comprising at least 50,000 oligopeptide features per cm2 where the oligopeptide features represent at least 50%, 60%, 70%, 80%, 90%, 95%, 99%, or 100% of the proteome of a virus or an organism. The present invention further relates to methods for the synthesis of such microarrays and methods of using microarrays comprising at least 50,000 oligopeptide features per cm2. In an embodiment of the invention, the oligopeptide features represent proteins expressed in the same species, wherein the oligopeptide features are presented in a tiling pattern representing at least about 5,000 to-at least about 25,000 proteins expressed in a species. In some embodiments, the oligopeptide microarray features represent proteins expressed in the same species, wherein the microarray features are present in a tiling pattern that represents at least about 5,000 to at least about 50,000 expressed proteins.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: February 25, 2014
    Assignee: Roche NimbleGen, Inc.
    Inventors: Tom Albert, Todd Richmond, Matthew Rodesch, Klaus-Peter Stengele, Jochen Bühler
  • Publication number: 20140051605
    Abstract: The present disclosure relates to photoactivable protecting groups containing a diarylsulfide chromophore, a method for the synthesis thereof and their use as photoactivable protecting groups using maskless photolithography based array synthesis.
    Type: Application
    Filed: October 23, 2013
    Publication date: February 20, 2014
    Applicant: NimbleGen Systems GmbH
    Inventor: Klaus-Peter Stengele
  • Publication number: 20120258891
    Abstract: The present disclosure relates to photoactivable protecting groups containing a diarylsulfide chromophore, a method for the synthesis thereof and their use as photoactivable protecting groups using maskless photolithography based array synthesis.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 11, 2012
    Applicant: NIMBLEGEN SYSTEMS GMBH
    Inventor: Klaus-Peter Stengele
  • Publication number: 20120245057
    Abstract: The present invention relates to a microarray comprising at least 50,000 oligopeptide features per cm2 where the oligopeptide features represent at least 50%, 60%, 70%, 80%, 90%, 95%, 99%, or 100% of the proteome of a virus or an organism. The present invention further relates to methods for the synthesis of such microarrays and methods of using microarrays comprising at least 50,000 oligopeptide features per cm2. In an embodiment of the invention, the oligopeptide features represent proteins expressed in the same species, wherein the oligopeptide features are presented in a tiling pattern representing at least about 5,000 to-at least about 25,000 proteins expressed in a species. In some embodiments, the oligopeptide microarray features represent proteins expressed in the same species, wherein the microarray features are present in a tiling pattern that represents at least about 5,000 to at least about 50,000 expressed proteins.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 27, 2012
    Inventors: Tom Albert, Todd Richmond, Matthew Rodesch, Klaus-Peter Stengele, Jochen Buhler
  • Patent number: 7687618
    Abstract: The present invention relates to a method for the manufacture of labeled oligonucleotide conjugates comprising the reaction of (a) an oligonucleotide having a labile protecting group bound to a terminal hydroxy group, and (b) a labeling compound, wherein said labile protecting group is partially or completely substituted by said labeling compound in a nucleophilic substitution reaction.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: March 30, 2010
    Assignee: NIMBLEGEN SYSTEMS GmbH
    Inventors: Klaus Peter Stengele, Evgueni Kvassiouk
  • Patent number: 7498176
    Abstract: The present invention is a microarray having a plurality of subarrays with a hydrophobic barrier that defines each subarray of the microarray, and a method for preparing such a microarray. The hydrophobic barrier is prepared using a microarray synthesis instrument, where NPPOC photoprotected and other hydrophobic group-bearing phosphoramidites are coupled to the microarray using light from a digital micromirror to direct formation of the hydrophobic barrier. The method utilizes hydrophobicity, a well-established property, of conventional phosphoramidite protecting groups for an entirely new application, the synthesis of hydrophobic barriers on microarrays.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: March 3, 2009
    Assignee: Roche Nimblegen, Inc.
    Inventors: Mark McCormick, Klaus-Peter Stengele, Gary Barrett, Roland Green
  • Patent number: 7432368
    Abstract: The present invention relates to novel nucleoside derivatives of general formula (I) wherein R1=H, halogen, NO2, CN, OCH3, an alkyl, alkoxy or alkoxyalkyl residue having 1 to 4 C atoms, preferably a methyl, ethyl, propyl or butyl residue or an optionally substituted aryl residue or aliphatic acyl residue having 2 to 5 atoms, R2 to R7=H, NO2, CN, OCH3, a branched or unbranched alkyl, alkoxy or alkoxyalkyl residue having 1 to 5 C atoms or an optionally substituted aryl residue or an aliphatic acyl residue having 2 to 5 atoms, X is the group C?O or C?S, Y?S, O, NR?, C(R?)2, wherein R? is H, or a branched or unbranched alkyl residue having 1 to 5 C atoms or an optionally substituted aryl residue, Z=SO2, OCO, OCS, SCS, and N is a nucleotide.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: October 7, 2008
    Assignee: Roche NimbleGen, Inc.
    Inventor: Klaus-Peter Stengele
  • Publication number: 20060154256
    Abstract: The present invention relates to a method for covalently attaching nucleosides and/or nucleotides on surfaces having reactive functional groups, where in a first step, the reactive functional groups are made to react with suitable derivatized nucleosides and/or nucleotides, and in a second step, they are converted with a protecting group reagent, so that a reaction product of the consecutive reaction interacts with electromagnetic radiation such that it can be quantitatively determined.
    Type: Application
    Filed: April 23, 2004
    Publication date: July 13, 2006
    Inventors: Klaus-Peter Stengele, Evgueni Kvassiouk
  • Publication number: 20050272076
    Abstract: The present invention relates to novel nucleoside derivatives of general formula (I) wherein R1?H, halogen, NO2, CN, OCH3, an alkyl, alkoxy or alkoxyalkyl residue having 1 to 4 C atoms, preferably a methyl, ethyl, propyl or butyl residue or an optionally substituted aryl residue or aliphatic acyl residue having 2 to 5 atoms, R2 to R7?H, NO2, CN, OCH3, a branched or unbranched alkyl, alkoxy or alkoxyalkyl residue having 1 to 5 C atoms or an optionally substituted aryl residue or an aliphatic acyl residue having 2 to 5 atoms, X is the group C?O or C?S, Y?S, O, NR?, C(R?)2, wherein R? is H, or a branched or unbranched alkyl residue having 1 to 5 C atoms or an optionally substituted aryl residue, Z=SO2, OCO, OCS, SCS, and N is a nucleotide.
    Type: Application
    Filed: April 20, 2005
    Publication date: December 8, 2005
    Inventor: Klaus-Peter Stengele