Patents by Inventor Klaus Schlenga

Klaus Schlenga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7464556
    Abstract: A magnetic resonance apparatus comprising a superconducting magnet coil disposed in a cryostat, and a refrigerator for cooling same comprising a compressor (1) for compressing a working gas, and a high-pressure line (2) and a low-pressure line (3) disposed between the compressor (1) and a control valve (5), which periodically connects the high-pressure line (2) and the low-pressure line (3) to at least one connecting line (6) between the control valve (5) and a cold head (4) of the refrigerator, thereby producing pressure pulses through the switched working gas, wherein the control valve (5) and/or connecting line (6) and cold head (4) components are rigidly mechanically coupled to the cryostat, is characterized in that at least one of the above-mentioned lines (2, 3, 6) is branched on the compressor side upstream of the rigidly coupled components, and is symmetrically joined at one of the coupled components in such a manner that the pressure pulses through the working gas are vectorially compensated for at t
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: December 16, 2008
    Assignee: Bruker Biospin GmbH
    Inventor: Klaus Schlenga
  • Publication number: 20080139394
    Abstract: A superconducting magnetic field coil (1; 21; 31; 41; 51; 61) comprising at least one coil section (42; 43) which is wound in layers, is characterized in that, in at least one layer (11, 12, 13, 14, 101, 102, 103, 104) of the coil section (42; 43) N (with N?2), superconducting wire sections (A, B, C, D, E) are wound in parallel, such that the windings of the N wire sections (A, B, C, D, E) are adjacent to each other and the N wire sections (A, B, C, D, E) are connected in series. The inventive magnetic field coil can be produced at highly reduced costs, in particular, when the magnetic field coil has a comparatively large layer length.
    Type: Application
    Filed: July 20, 2007
    Publication date: June 12, 2008
    Applicant: Bruker BioSpin GmbH
    Inventor: Klaus Schlenga
  • Patent number: 7330092
    Abstract: A superconducting magnet coil configuration comprising at least one section of a superconducting strip conductor, which is continuously wound in a cylindrical winding chamber (1) between two end flanges (2, 3) in several solenoid-like layers is characterized in that the section comprises an axial region of reduced current density (=notch region (12)), and the winding chamber (1) in the notch region (12) contains a first separating body (4) with a truncated conical envelope (5) which axially divides the winding chamber (1) into two partial chambers (6, 7), the superconducting strip conductor being guided over the truncated conical envelope (5) of the first separating body (4) from one partial chamber (6) into the other partial chamber (7) via a single-layer transfer winding (9), and a second separating body (10) is provided which supplements the first separating body (4) in the notch region (12) in a radial outer direction to form a circular cylinder, wherein the single-layer transfer winding (9) is disposed b
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: February 12, 2008
    Assignee: Bruker Biospin GmbH
    Inventors: Volker Niemann, Gerhard Roth, Klaus Schlenga
  • Patent number: 7317369
    Abstract: A superconducting magnet coil configuration comprising at least one section of a superconducting strip conductor, which is continuously wound in a cylindrical winding chamber (1) between two end flanges (2, 3) in several solenoid-like layers is characterized in that the section comprises an axial region of reduced current density (=notch region (10)), and the winding layers (6, 9) have hollow cylindrical blind regions (4a, 4b, 4c) which are filled with filler and which have different axial lengths, and radially sequential blind regions (4a, 4b, 4c) each alternately abut one of the two end flanges (2, 3) and are each radially separated from each other by at least one continuous winding layer (7), wherein the axial overlapping region of the blind regions (4a, 4b, 4c) forms the notch region (10). The inventive device thereby realizes a magnet coil configuration comprising a strip conductor which has a notch region for correcting inhomogeneities, wherein the mechanical load on the strip conductor is minimized.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: January 8, 2008
    Assignee: Bruker Biospin GmbH
    Inventors: Gerhard Roth, Volker Niemann, Klaus Schlenga
  • Patent number: 7310034
    Abstract: A superconducting magnet coil configuration has at least one section containing a superconducting strip conductor which is wound in several layers like a solenoid in a cylindrical winding chamber (1) between two end flanges (2, 3), characterized in that the radially innermost layers of the section consist of metallic low-temperature superconductors (LTS) (LTS layers (8)) and radially adjacent layers of the section are formed from high-temperature superconductor (HTS) material (HTS layers (9)). The invention proposes a magnet coil configuration using HTS material which has a notch structure for correcting inhomogeneities and homogenizing a compact high-field magnet, wherein the mechanical load on the HTS strip conductor is minimized.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: December 18, 2007
    Assignee: Bruker Biospin GmbH
    Inventors: Klaus Schlenga, Volker Niemann, Gerhard Roth
  • Publication number: 20070266552
    Abstract: A winding machine (1) for winding solenoid-shaped coils (21) with band-shaped conductors (6), comprising a winding means (3) which holds a circular-cylindrical coil core (2) of a coil (21) to be wound, and a winding drive which rotates a coil core (2), which is held in the winding means (3), about a winding axis W, wherein the winding means (3) can be moved in a first direction A by an axial drive, the direction A preferably extending approximately parallel to the winding axis W, is characterized in that the winding means (3) can be rotated about a pivot axis S by a pivot drive, wherein the pivot axis S extends perpendicularly to the direction A. The winding machine winds a solenoid-shaped coil with several layers of a band-shaped conductor without damaging the band-shaped conductor, in particular, when the band-shaped conductor contains brittle superconducting material.
    Type: Application
    Filed: March 6, 2007
    Publication date: November 22, 2007
    Applicant: Bruker BioSpin GmbH, D-76287
    Inventors: Gerhard Roth, Klaus Schlenga, Thorsten Greeb, Roland Binger
  • Publication number: 20070107446
    Abstract: A superconducting magnet system with a superconducting magnet coil system, which is disposed in a cryogenic fluid tank (2) of a cryostat (1), and an exchangeable refrigerator (5; 31) which is operated in a vacuum container (8) and is provided to re-liquify the cryogenic fluid flowing through a tubular conduit (4; 21) is characterized in that the tubular conduit (4; 21) is rigidly installed in the cryostat (1). The refrigerator reaches its optimum performance during operation in a vacuum, and can be easily exchanged in case of a defect.
    Type: Application
    Filed: August 28, 2006
    Publication date: May 17, 2007
    Applicant: Bruker BioSpin GmbH
    Inventors: Klaus Schlenga, Claus Hanebeck
  • Patent number: 7215230
    Abstract: A method for calculating the shape of a band-shaped superconductor (3) of a solenoid-shaped coil section of a high-field magnet coil (1) in a transfer region (5) is characterized in that the band-shaped superconductor (3) is changed in the transfer region from a first orientation (3a) tangentially flatly abutting on the surface of a cylindrical coil body (2) and substantially perpendicular to the longitudinal direction of the cylindrical coil body (2) to a second orientation (3b) with its narrow side seating on the surface of the cylindrical coil body and parallel to the longitudinal direction (or vice versa).
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: May 8, 2007
    Assignee: Bruker Biospin GmbH
    Inventors: Volker Niemann, Klaus Schlenga
  • Publication number: 20070022761
    Abstract: A superconducting magnet system with a superconducting magnet coil system disposed in a cryogenic fluid tank (2) of a cryostat (1), and a refrigerator (6) for cooling the cryogenic fluid that cools the magnet, is characterized in that a radiation shield (5; 21; 31; 41; 51) is provided which separates a refrigerator space (4) from the cryogenic fluid tank (2), wherein the entire cooling region (9) of the refrigerator (6) is disposed in the refrigerator space (4), and wherein the radiation shield (5; 21; 31; 41; 51) has openings (11; 22; 44, 45; 53) for gas or fluid exchange between the refrigerator space (4) and the cryogenic fluid tank (2). Should the refrigerator fail, the thermal input into the cryostat is reduced, and the safety of the maintenance staff is improved in case of a quench.
    Type: Application
    Filed: July 19, 2006
    Publication date: February 1, 2007
    Applicant: Bruker BioSpin GmbH
    Inventors: Klaus Schlenga, Claus Hanebeck
  • Publication number: 20070008055
    Abstract: A superconducting magnet coil configuration comprising at least one section of a superconducting strip conductor, which is continuously wound in a cylindrical winding chamber (1) between two end flanges (2, 3) in several solenoid-like layers is characterized in that the section comprises an axial region of reduced current density (=notch region (10)), and the winding layers (6, 9) have hollow cylindrical blind regions (4a, 4b, 4c) which are filled with filler and which have different axial lengths, and radially sequential blind regions (4a, 4b, 4c) each alternately abut one of the two end flanges (2, 3) and are each radially separated from each other by at least one continuous winding layer (7), wherein the axial overlapping region of the blind regions (4a, 4b, 4c) forms the notch region (10). The inventive device thereby realizes a magnet coil configuration comprising a strip conductor which has a notch region for correcting inhomogeneities, wherein the mechanical load on the strip conductor is minimized.
    Type: Application
    Filed: August 31, 2005
    Publication date: January 11, 2007
    Applicant: Bruker BioSpin GmbH
    Inventors: Gerhard Roth, Volker Niemann, Klaus Schlenga
  • Publication number: 20060254288
    Abstract: A magnetic resonance apparatus comprising a superconducting magnet coil disposed in a cryostat, and a refrigerator for cooling same comprising a compressor (1) for compressing a working gas, and a high-pressure line (2) and a low-pressure line (3) disposed between the compressor (1) and a control valve (5), which periodically connects the high-pressure line (2) and the low-pressure line (3) to at least one connecting line (6) between the control valve (5) and a cold head (4) of the refrigerator, thereby producing pressure pulses through the switched working gas, wherein the control valve (5) and/or connecting line (6) and cold head (4) components are rigidly mechanically coupled to the cryostat, is characterized in that at least one of the above-mentioned lines (2, 3, 6) is branched on the compressor side upstream of the rigidly coupled components, and is symmetrically joined at one of the coupled components in such a manner that the pressure pulses through the working gas are vectorially compensated for at t
    Type: Application
    Filed: January 12, 2006
    Publication date: November 16, 2006
    Applicant: Bruker BioSpin Gmbh
    Inventor: Klaus Schlenga
  • Publication number: 20060152315
    Abstract: A superconducting magnet coil configuration has at least one section containing a superconducting strip conductor which is wound in several layers like a solenoid in a cylindrical winding chamber (1) between two end flanges (2, 3), characterized in that the radially innermost layers of the section consist of metallic low-temperature superconductors (LTS) (LTS layers (8)) and radially adjacent layers of the section are formed from high-temperature superconductor (HTS) material (HTS layers (9)). The invention proposes a magnet coil configuration using HTS material which has a notch structure for correcting inhomogeneities and homogenizing a compact high-field magnet, wherein the mechanical load on the HTS strip conductor is minimized.
    Type: Application
    Filed: August 31, 2005
    Publication date: July 13, 2006
    Applicant: Bruker BioSpin GmbH
    Inventors: Klaus Schlenga, Volker Niemann, Gerard Roth
  • Publication number: 20060055494
    Abstract: A superconducting magnet coil configuration comprising at least one section of a superconducting strip conductor, which is continuously wound in a cylindrical winding chamber (1) between two end flanges (2, 3) in several solenoid-like layers is characterized in that the section comprises an axial region of reduced current density (=notch region (12)), and the winding chamber (1) in the notch region (12) contains a first separating body (4) with a truncated conical envelope (5) which axially divides the winding chamber (1) into two partial chambers (6, 7), the superconducting strip conductor being guided over the truncated conical envelope (5) of the first separating body (4) from one partial chamber (6) into the other partial chamber (7) via a single-layer transfer winding (9), and a second separating body (10) is provided which supplements the first separating body (4) in the notch region (12) in a radial outer direction to form a circular cylinder, wherein the single-layer transfer winding (9) is disposed b
    Type: Application
    Filed: August 31, 2005
    Publication date: March 16, 2006
    Applicant: Bruker BioSpin GmbH
    Inventors: Volker Niemann, Gerhard Roth, Klaus Schlenga
  • Patent number: 6777938
    Abstract: An NMR magnet coil system, comprising superconducting conductor structures, with an inductance L0 for generating a homogeneous magnetic field B0 through which an operating current I0 flows in the persistent mode, and wherein further superconducting switches (S1, S2, . . . Sn−1) are each provided between two points (P1, Q1), (P2, Q2), . . . , (Pn−1, Qn−1) of the winding of the magnet coil system which, during operation, separately superconductingly short-circuit one or more disjoint partial regions (1, 2, . . . , n−1) with the inductances L1, L2, . . . , Ln−1 to generate magnetic field contributions B1, B2, . . .
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: August 17, 2004
    Assignee: Bruker Biospin GmbH
    Inventors: Klaus Schlenga, Wolfgang Frantz, Gerhard Roth, Pierre-Alain Bovier, Andreas Amann, Robert Schauwecker
  • Patent number: 6774752
    Abstract: The invention concerns an NMR (nuclear magnetic resonance) high field magnet coil system comprising superconducting conductor structures for generating a homogeneous magnetic field B0 in a measuring volume (23) with several radially nested solenoidal coil sections (12, 13, 31), which is characterized in that the radially innermost coil section (31) is wound with a band-shaped superconductor with an aspect ratio (width to thickness) >3 on a coil support which axially projects, at least at one axial end, past the winding packet of the radially neighboring coil section (12) and the band-shaped superconductor is guided on this side tangentially towards the outside to a region of reduced magnetic field strength and terminates in at least one electrical connecting point (16). This permits use of a brittle band-shaped superconductor for the innermost coil system (31) which cannot be strongly bent at the upper edge.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: August 10, 2004
    Assignee: Bruker Biospin GmbH
    Inventors: Klaus Schlenga, Gerhard Roth, Arne Kasten
  • Publication number: 20040135659
    Abstract: The invention concerns an NMR (nuclear magnetic resonance) high field magnet coil system comprising superconducting conductor structures for generating a homogeneous magnetic field B0 in a measuring volume (23) with several radially nested solenoidal coil sections (12, 13, 31), which is characterized in that the radially innermost coil section (31) is wound with a band-shaped superconductor with an aspect ratio (width to thickness) >3 on a coil support which axially projects, at least at one axial end, past the winding packet of the radially neighboring coil section (12) and the band-shaped superconductor is guided on this side tangentially towards the outside to a region of reduced magnetic field strength and terminates in at least one electrical connecting point (16). This permits use of a brittle band-shaped superconductor for the innermost coil system (31) which cannot be strongly bent at the upper edge.
    Type: Application
    Filed: January 17, 2003
    Publication date: July 15, 2004
    Applicant: Bruker BioSpin GmbH
    Inventors: Klaus Schlenga, Gerhard Roth, Arne Kasten
  • Publication number: 20040122638
    Abstract: A method for calculating the shape of a band-shaped superconductor (3) of a solenoid-shaped coil section of a high-field magnet coil (1) in a transfer region (5) is characterized in that the band-shaped superconductor (3) is changed in the transfer region from a first orientation (3a) tangentially flatly abutting on the surface of a cylindrical coil body (2) and substantially perpendicular to the longitudinal direction of the cylindrical coil body (2) to a second orientation (3b) with its narrow side seating on the surface of the cylindrical coil body and parallel to the longitudinal direction (or vice versa).
    Type: Application
    Filed: December 9, 2003
    Publication date: June 24, 2004
    Applicant: Burker BioSpin GmbH
    Inventors: Volker Niemann, Klaus Schlenga
  • Patent number: 6753748
    Abstract: A superconducting high-field magnet coil (1; 27; 38) comprising at least one radially inner (2) and at least one radially outer coil section (3; 32; 33), wherein at least the radially inner coil section (2) is wound in a solenoid-shaped fashion with an HTS (high temperature superconductor) band conductor (14; 20; 36) and wherein at least one superconducting connection is provided between the radially inner coil section and the radially outer coil section is characterized in that the superconducting connection comprises a first superconducting joint (5; 39) between two HTS band conductors at which the HTS band conductor of the radially inner coil section is connected to at least one further HTS band conductor (6; 21, 22; 29; 40), flatly overlapping same, such that the two HTS band conductors mutually subtend an angle of between 30° and 150°, and with a second superconducting joint (7; 41) which is electrically connected in series with the first, and which is geometrically disposed in a region of consid
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: June 22, 2004
    Assignee: Bruker Biospin GmbH
    Inventor: Klaus Schlenga
  • Publication number: 20040108924
    Abstract: A superconducting high-field magnet coil (1; 27; 38) comprising at least one radially inner (2) and at least one radially outer coil section (3; 32; 33), wherein at least the radially inner coil section (2) is wound in a solenoid-shaped fashion with an HTS (high temperature superconductor) band conductor (14; 20; 36) and wherein at least one superconducting connection is provided between the radially inner coil section and the radially outer coil section is characterized in that the superconducting connection comprises a first superconducting joint (5; 39) between two HTS band conductors at which the HTS band conductor of the radially inner coil section is connected to at least one further HTS band conductor (6; 21, 22; 29; 40), flatly overlapping same, such that the two HTS band conductors mutually subtend an angle of between 30° and 150°, and with a second superconducting joint (7; 41) which is electrically connected in series with the first, and which is geometrically disposed in a region of consid
    Type: Application
    Filed: May 27, 2003
    Publication date: June 10, 2004
    Applicant: Bruker BioSpin GmbH
    Inventor: Klaus Schlenga
  • Publication number: 20030094951
    Abstract: An NMR magnet coil system, comprising superconducting conductor structures, with an inductance L0 for generating a homogeneous magnetic field B0 through which an operating current I0 flows in the persistent mode, and wherein further superconducting switches (S1, S2, . . . Sn−1) are each provided between two points (P1, Q1), (P2, Q2), . . . , (Pn−1, Qn−1) of the winding of the magnet coil system which, during operation, separately superconductingly short-circuit one or more disjoint partial regions (1, 2, . . . , n−1) with the inductances L1, L2, . . . , Ln−1 to generate magnetic field contributions B1, B2, . . . , Bn−1 to the homogeneous magnetic field B0, is characterized in that the following is valid: 1 α = &LeftBracketingBar; L 0 ⁢ ∑ j = 1 n ⁢ ( L - 1 ) jn ⁢ B j B 0 &RightBracketingBar; ≤ 0.
    Type: Application
    Filed: October 29, 2002
    Publication date: May 22, 2003
    Applicant: Bruker BioSpin GmbH
    Inventors: Klaus Schlenga, Wolfgang Frantz, Gerhard Roth, Pierre-Alain Bovier, Andreas Amann, Robert Schauwecker