Patents by Inventor Klaus W. Schatz

Klaus W. Schatz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5681450
    Abstract: A cyclone and process for fluidized catalytic cracking of heavy oils is disclosed. Gas and entrained solids are added around a clean gas outlet tube in a cyclone body. Solids and some gas are withdrawn via a solids outlet and discharged into a catch chamber. Some of the gas discharged with the solids into the catch chamber is returned to the interior of the cyclone body via an opening in the cyclone. Chaotic reflux of gas back into the cyclone via the solids outlet is eliminated. The device may be used as an FCC regenerator third stage separator or to improve other gas/solid separations.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 28, 1997
    Inventors: Girish K. Chitnis, Stephen J. McGovern, Klaus W. Schatz
  • Patent number: 5552121
    Abstract: A system for containing and neutralizing a heavy vapor cloud from a potential source of hazardous vapor, such as HF from an HF alkylation unit, comprising a primary containment enclosure for containing and neutralizing a major portion of the vapor in the event of a leak, and a secondary fence line spaced from the primary enclosure for absorbing the vapor as the cloud passes therethrough.
    Type: Grant
    Filed: August 29, 1994
    Date of Patent: September 3, 1996
    Assignee: Phillips Petroleum Company
    Inventors: J. Scott Buchanan, Mohsen N. Harandi, Frederick J. Krambeck, Klaus W. Schatz
  • Patent number: 5465536
    Abstract: A system for containment of heavy vapor cloud and aerosol from a potential source of hazardous vapor comprising walled surfaces surrounding the vapor source and a roof above the vapor source and forming with the walled surfaces an enclosure for the vapor source. The roof is porous with openings therethrough dimensioned for minimizing wind shear and extending over at least about 20% of the surface area of the roof, and a device is located within the enclosure for absorbing the vapor.
    Type: Grant
    Filed: January 27, 1994
    Date of Patent: November 14, 1995
    Assignee: Mobil Oil Corporation
    Inventors: John S. Buchanan, Frederick J. Krambeck, Klaus W. Schatz
  • Patent number: 5362446
    Abstract: A method of increasing rainout from a liquid jet of an aerosolable corrosive and toxic substance, e.g. hydrogen fluoride, hydrofluoric acid, ammonia or chlorine, exiting from a pressurized source, such as a vessel, conduit, pump. The method includes spacing an impact plate from the pressurized source for deflecting the liquid jet to dissipate forward velocity and energy of the liquid jet. The impact plate is positioned a distance from the pressurized source to impact the liquid jet before the liquid is capable of expanding to form a substantial aerosol of vaporized substance. A mesh pad abuts the impact plate and faces the pressurized source for initially reducing the velocity and energy of the liquid jet, and for preventing back and radial splash of the liquid jet deflecting off the impact plate to coalesce droplets of the substance and thereby produce a collectable run-off.
    Type: Grant
    Filed: October 8, 1993
    Date of Patent: November 8, 1994
    Assignee: Mobil Oil Corporation
    Inventor: Klaus W. Schatz
  • Patent number: 5286456
    Abstract: System for increasing rainout from a liquid jet of an aerosolable corrosive and toxic substance, e.g. hydrogen fluoride, hydrofluoric acid, ammonia or chlorine, exiting from a pressurized source such as a vessel, conduit, pump. The system includes an impact plate spaced from the pressurized source for deflecting the liquid jet to dissipate forward velocity and energy of the liquid jet. The impact plate is positioned a distance from the pressurized source to impact the liquid jet before the liquid is capable of expanding to form a substantial aerosol of vaporized substance. A mesh pad abuts the impact plate and faces the pressurized source for initially reducing the velocity and energy of the liquid jet, and for preventing back and radial splash of the liquid jet deflecting off the impact plate to coalesce droplets of the substance and thereby produce a collectable run-off.
    Type: Grant
    Filed: September 24, 1992
    Date of Patent: February 15, 1994
    Assignee: Mobil Oil Corporation
    Inventor: Klaus W. Schatz
  • Patent number: 5055177
    Abstract: Disclosed is a method and apparatus for fluid catalytic cracking (FCC). The output of a reactor riser zone is fed to a riser cyclone separator, a primary cyclone separator, and secondary cyclone separators, connected in series within a single reactor vessel. The riser cyclone separator is connected to the primary cyclone separator by a conduit, which prevents random post-riser thermal cracking of the hydrocarbons after they exit the riser cyclone separator. The conduit contains an annular port to allow strippping gas to enter the conduit to improve the separator of hydrocarbons from catalyst. Catalyst separated in the riser cyclone separator drops through a riser cyclone dipleg and passes through a dipleg seal which comprises a seal pot or catalyst held around the dipleg. The conduit is formed by two overlapping parts, one having a larger diameter than the other to form the annular port and packing or spacers may be used to align and space the overlapping parts.
    Type: Grant
    Filed: July 5, 1990
    Date of Patent: October 8, 1991
    Assignee: Mobil Oil Corporation
    Inventors: James H. Haddad, Hartley Owen, Klaus W. Schatz
  • Patent number: 5039397
    Abstract: Disclosed is a method and apparatus for fluid catalytic cracking (FCC). The output of a reactor riser zone is fed to a riser cyclone separator, a primary cyclone separator, and secondary cyclone separators, connected in series within a single reactor vessel. The riser cyclone separator is connected to the primary cyclone separator by a conduit, which prevents random post-riser thermal cracking of the hydrocarbons after they exit the riser cyclone separator. The conduit contains an annular port to allow stripping gas to enter the conduit to improve the separation of hydrocarbons from catalyst. Catalyst separated in the riser cyclone separator drops through a riser cyclone dipleg and passes through a dipleg seal which comprises a seal pot or catalyst held around the dipleg. The conduit is formed by two overlapping parts, one having a larger diameter than the other to form the annular port and packing or spacers may be used to align and space the overlapping parts.
    Type: Grant
    Filed: January 30, 1990
    Date of Patent: August 13, 1991
    Assignee: Mobil Oil Corporation
    Inventors: James H. Haddad, Hartley Owen, Klaus W. Schatz
  • Patent number: 4933150
    Abstract: Disclosed is a method of and apparatus for reducing the level of extremely small catalyst particles ("fines") in an FCC system by temporarily retaining particles separated from the secondary cyclone separator in a reactor vessel or catalyst regenerator. These particles can be intermittently withdrawn from the temporary retaining area in order to achieve particle flow at a low volume rate, which takes them out of the active catalyst inventory within the reactor/regenerator system. The intermittent withdrawing of catalyst "fines" reduces the particulate contamination both in flue gas exhausted to the atmosphere from the catalyst regenerator and in the main column bottom (MCB) products from the fractionation stage. Preferred embodiments include intermittent withdrawal of "fines" from either the regenerator or the reactor vessels and the secondary cyclones contained in each of these vessels.
    Type: Grant
    Filed: October 21, 1988
    Date of Patent: June 12, 1990
    Assignee: Mobil Oil Corp.
    Inventors: James H. Haddad, Hartley Owen, Klaus W. Schatz
  • Patent number: 4909993
    Abstract: Disclosed is a method and apparatus for fluid catalytic cracking (FCC). The output of a reactor riser zone is fed to a riser cyclone separator, a primary cyclone separator, and secondary cyclone separators, connected in series within a single reactor vessel. The riser cyclone separator is connected to the primary cyclone separator by a conduit, which prevents random post-riser thermal cracking of the hydrocarbons after they exit the riser cyclone separator. The conduit contains an annular port to allow stripping gas to enter the conduit to improve the separation of hydrocarbons from catalyst. Catalyst separated in the riser cyclone separator drops through a riser cyclone dipleg and passes through a dipleg seal which comprises a seal pot or catalyst held around the dipleg. The conduit is formed by two overlapping parts, one having a larger diameter than the other to form the annular port and packing or spacers may be used to align and space the overlapping parts.
    Type: Grant
    Filed: October 19, 1988
    Date of Patent: March 20, 1990
    Assignee: Mobil Oil Corporation
    Inventors: James H. Haddad, Hartley Owen, Klaus W. Schatz
  • Patent number: 4875994
    Abstract: A process and apparatus for cracking heavy hydrocarbons using a mixture of fluid cracking catalyst and a demetallizing additive differing in physical characteristics from the cracking catalyst is described. A heavy, metals containing feed such as a resid contacts demetallizing additive in the base of a riser reactor. The demetallized resid is cracked by contact with a stream of hot, regenerated catalyst. A mixture of metal containing additive, deactivated cracking catalyst, and cracked products is discharged from the riser. The metal containing additive and deactivated catalyst are stripped, preferably with steam, and charged to a two-stage regenerator. The first stage of the regenerator partially regenerates the cracking catalyst and separates it by elutriation from the demetallizing additive, which accumulates as a dense phase fluidized bed in a lower portion of the first stage regenerator.
    Type: Grant
    Filed: June 10, 1988
    Date of Patent: October 24, 1989
    Inventors: James H. Haddad, Hartley Owen, Klaus W. Schatz
  • Patent number: 4810360
    Abstract: Disclosed is a method of and apparatus for reducing the level of extremely small catalyst particles ("fines") in an FCC system by temporarily retaining particles separated from the secondary cyclone separator in a reactor vessel or catalyst regenerator. These particles can be intermittently withdrawn from the temporary retaining area in order to achieve particle flow at a low volume rate, which takes them out of the active catalyst inventory within the reactor/regenerator system. The intermittent withdrawing of catalyst "fines"]reduces the particulate contamination both in flue gas exhausted to the atmosphere from the catalyst regenreator and in the main column bottom (MCB) produces from the fractionation stage. Preferred embodiments include intermittent withdrawal of "fines" from either the regenerator or the reactor vessels and the secondary cyclones contained in each of these vessels.
    Type: Grant
    Filed: November 2, 1984
    Date of Patent: March 7, 1989
    Assignee: Mobil Oil Corp.
    Inventors: James H. Haddad, Hartley Owen, Klaus W. Schatz
  • Patent number: 4789458
    Abstract: A fluid catalytic cracking (FCC) process and apparatus is described which includes a high temperature stripper (hot stripper) to control the carbon level, hydrogen level, and sulfur level on spent catalyst, followed by single or multi-stage regeneration. The high temperature stripper may operate at a temperature between 100.degree. F. above the temperature of a catalyst hydrocarbon mixture exiting a riser and 1500.degree. F. The regenerator may operate at a temperature between 100.degree. F. above that of the catalyst in the hot stripper and 1600.degree. F. Hot regenerated catalyst recycles to the hot stripper to maintain the hot stripper temperature. The present invention has the advantage that it separates hydrogen from catalyst to eliminate hydrothermal degradation, and separates sulfur from catalyst as hydrogen sulfide and mercaptans which are easy to scrub. The present invention also provides a method and apparatus for converting a TCC unit to a FCC unit, with maximum use of the TCC unit.
    Type: Grant
    Filed: June 15, 1987
    Date of Patent: December 6, 1988
    Assignee: Mobil Oil Corporation
    Inventors: James H. Haddad, Hartley Owen, Klaus W. Schatz
  • Patent number: 4749471
    Abstract: There is disclosed a fluid catalytic cracking (FCC) apparatus and process comprising a reactor riser zone, primary and secondary cyclones, connected in series to the riser zone, and a stripping zone. The riser zone, the primary and the secondary cyclones, and the stripping zone, are placed within a single reactor vessel. The primary cyclone is connected to the reactor riser zone by an enclosed conduit which prevents random post-thermal cracking of the hydrocarbons after they exit the reactor riser zone. The secondary cyclone is also connected to the primary cyclone by an enclosed conduit. Any one or both of the enclosed conduits contain a trickle valve to accommodate sudden increased surges of pressure and of flow of the hydrocarbons and catalyst mixture. The reactor riser zone is equipped with an opening which allows stripping gases, from the stripping zone, to enter the riser. The gases are subsequently conducted through the primary and secondary cyclones to the downstream fractionation means.
    Type: Grant
    Filed: April 10, 1987
    Date of Patent: June 7, 1988
    Assignee: Mobil Oil Corporation
    Inventors: Anthony Y. Kam, Frederick J. Krambeck, Klaus W. Schatz
  • Patent number: 4711712
    Abstract: A fluid catalytic cracking (FCC) process and apparatus containing a reactor riser zone and radially extending sidearms as the first catalyst-hydrocarbon product separation means. Hydrocarbon products separated in the sidearms are conducted through an enclosed passageway to a secondary separation means, such as a cyclone. The catalyst is also conducted through the enclosed passageway to a stripping apparatus, wherein entrained hydrocarbons are removed therefrom. The enclosed passageway contains a means for accommodating sudden surges of catalyst flow and increased pressure, e.g., a trickle valve.
    Type: Grant
    Filed: November 12, 1986
    Date of Patent: December 8, 1987
    Assignee: Mobil Oil Corporation
    Inventor: Klaus W. Schatz
  • Patent number: 4689206
    Abstract: An apparatus for fluid catalytic cracking (FCC) of a hydrocarbon feed in an open or closed system, which includes a multistage stripper system, which comprises a means for spinning a gasiform mixture of catalyst and cracked hydrocarbons exiting from a riser, a first means for stripping the spun gasiform mixture, and a means for deflecting the gasiform mixture to separate catalyst from the cracked hydrocarbons.
    Type: Grant
    Filed: October 15, 1985
    Date of Patent: August 25, 1987
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Klaus W. Schatz
  • Patent number: 4654060
    Abstract: An apparatus for fluid catalytic cracking (FCC) wherein the output of a reactor riser zone is fed to a riser cyclone separator, a primary cyclone separator, and secondary cyclone separators, connected in series within a single reactor vessel. The riser cyclone separator is connected to the primary cyclone separator by a conduit, which prevents random post-riser thermal cracking of the hydrocarbons after they exit the riser cyclone separator. The conduit contains an annular port to allow stripping gas to enter the conduit to improve the separation of hydrocarbons from catalyst. Catalyst separated in the riser cyclone separator drops through a riser cyclone dipleg and passes through a dipleg seal which comprises a seal pot or catalyst held around the dipleg. The conduit is formed by two overlapping parts, one having a larger diameter than the other to form the annular port and packing or spacers may be used to align and space the overlapping parts.
    Type: Grant
    Filed: November 13, 1984
    Date of Patent: March 31, 1987
    Assignee: Mobil Oil Corporation
    Inventors: James H. Haddad, Hartley Owen, Klaus W. Schatz
  • Patent number: 4624772
    Abstract: A fluid catalytic cracking (FCC) apparatus and process comprising a reactor riser zone, a primary and a secondary cyclones, connected in series to the riser zone, and a stripping zone. The riser zone, the primary and the secondary cyclones, and the stripping zone, are placed within a single reactor vessel. The primary cyclone is connected to the reactor riser zone by an enclosed conduit which prevents random post-riser thermal cracking of the hydrocarbons after they exit the reactor riser zone. The conduit contains a trickle valve, or other means, to accommodate sudden increased surges of flow of the hydrocarbons and catalyst mixture.
    Type: Grant
    Filed: November 8, 1985
    Date of Patent: November 25, 1986
    Assignee: Mobil Oil Corporation
    Inventors: Frederick J. Krambeck, Klaus W. Schatz
  • Patent number: 4588558
    Abstract: A fluid catalytic cracking (FCC) apparatus comprising a reactor riser zone, primary and secondary cyclones, connected in series to the riser zone, and a stripping zone. The riser zone, the primary and the secondary cyclones, and the stripping zone, are placed within a single reactor vessel. The primary cyclone is connected to the reactor riser zone by an enclosed conduit which prevents random post-thermal cracking of the hydrocarbons after they exit the reactor riser zone. The secondary cyclone is also connected to the primary cyclone by an enclosed conduit. Any one or both of the enclosed conduits contain a trickle valve to accommodate sudden increased surges of pressure and of flow of the hydrocarbons and catalyst mixture. The reactor riser zone is equipped with an opening which allows stripping gases, from the stripping zone, to enter the riser. The gases are subsequently conducted through the primary and secondary cyclones to the downstream fractionation means.
    Type: Grant
    Filed: September 6, 1983
    Date of Patent: May 13, 1986
    Assignee: Mobil Oil Corporation
    Inventors: Anthony Y. Kam, Frederick J. Krambeck, Klaus W. Schatz
  • Patent number: 4581205
    Abstract: A fluid catalytic cracking (FCC) process and apparatus containing a reactor riser zone and radially extending sidearms as the first catalyst-hydrocarbon product separation means. Hydrocarbon products separated in the sidearms are conducted through an enclosed passageway to a secondary separation means, such as a cyclone. The catalyst is also conducted through the enclosed passageway to a stripping apparatus, wherein entrained hydrocarbons are removed therefrom. The enclosed passageway contains a means for accommodating sudden surges of catalyst flow and increased pressure, e.g., a trickle valve.
    Type: Grant
    Filed: September 6, 1983
    Date of Patent: April 8, 1986
    Assignee: Mobil Oil Corporation
    Inventor: Klaus W. Schatz
  • Patent number: 4579716
    Abstract: A fluid catalytic cracking (FCC) apparatus and process comprising a reactor riser zone, a primary and a secondary cyclones, connected in series to the riser zone, and a stripping zone. The riser zone, the primary and the secondary cyclones, and the stripping zone, are placed within a single reactor vessel. The primary cyclone is connected to the reactor riser zone by an enclosed conduit which prevents random post-riser thermal cracking of the hydrocarbons after they exit the reactor riser zone. The conduit contains a trickle valve, or other means, to accommodate sudden increased surges of flow of the hydrocarbons and catalyst mixture.
    Type: Grant
    Filed: September 6, 1983
    Date of Patent: April 1, 1986
    Assignee: Mobil Oil Corporation
    Inventors: Frederick J. Krambeck, Klaus W. Schatz