Patents by Inventor Klavs Jespersen

Klavs Jespersen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240068437
    Abstract: The present invention relates to a method of manufacturing a wind turbine blade shell component (38), the method comprising the steps of providing a plurality of pultrusion plates (64), arranging the pultrusion plates (64) on blade shell material (89) in a mould (77) for the blade shell component, and bonding the pultrusion plates (64) with the blade shell material to form the blade shell component, wherein each pultrusion plate (64) is formed of a pultrusion fibre material comprising glass fibres and carbon fibres. The invention also relates to a reinforcing structure for a wind turbine blade, the reinforcing structure comprising a plurality of pultrusion plates according to the present invention.
    Type: Application
    Filed: December 30, 2021
    Publication date: February 29, 2024
    Inventors: Mahdi BAVILOLIAIE, Klavs JESPERSEN, Lars LILLEHEDEN
  • Patent number: 11884029
    Abstract: The present invention relates to a method of manufacturing a wind turbine blade using a two-step curing process, wherein the second curing is performed in the presence of a resin flow medium (76) comprising a curing inhibitor.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: January 30, 2024
    Assignee: LM WIND POWER A/S
    Inventors: Lars Nielsen, Klavs Jespersen
  • Publication number: 20240018938
    Abstract: A wind turbine blade comprising a shell, a carbon fibre-reinforced suction-side spar cap, a carbon fibre-reinforced pressure-side spar cap, at least a first shear web connected to the spar caps, one or more suction-side buckling reinforcement elements each being formed of a material different from the suction-side spar cap and being positioned on the interior surface of the suction-side spar cap and at a distance from the suction-side end of the first shear web, and one or more pressure-side buckling reinforcement elements each being formed of a material different from the pressure-side spar cap and being positioned on the interior surface of the pressure-side spar cap and at a distance from the pressure-side end of the first shear web.
    Type: Application
    Filed: December 6, 2021
    Publication date: January 18, 2024
    Inventors: Klavs JESPERSEN, Lars NIELSEN
  • Patent number: 11865744
    Abstract: The present invention relates to a method for manufacturing a wind turbine blade part. The method comprises providing one or more wind turbine blade components including a wind turbine blade component comprising a fibre material element, an electrically conductive element, a magnetic field generator for generating an Eddy current in the electrically conductive element; arranging the electrically conductive element, the magnetic field generator, and the fibre material element such that at least a part of the fibre material element is positioned between the electrically conductive element and the magnetic field generator; generating an Eddy current in the electrically conductive element using the magnetic field generator; generating, using a magnetic sensor, a signal representing a magnetic field induced by the generated Eddy current, and forming the wind turbine blade part by assembling the wind turbine blade components.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: January 9, 2024
    Assignee: LM WIND POWER A/S
    Inventors: Ya Min Jørgensen, Lars Nielsen, Klavs Jespersen
  • Publication number: 20240001628
    Abstract: Method for manufacturing a wind turbine blade comprising an aerodynamic shell forming an outer surface of the blade and at least one main laminate, the method comprising; providing a mould 13, forming a main laminate 18 in the mould by providing a fibre lay-up comprising a plurality of fibre plies placed on top of each other in the mould 13, dividing the fibre lay-up into at least two segments as seen in the longitudinal direction of the mould by at least one transverse flow barrier 54,55 in the lay-up preventing longitudinal resin flow through the fibre lay-up past the flow barrier 54,55.
    Type: Application
    Filed: December 22, 2021
    Publication date: January 4, 2024
    Inventors: Lars NIELSEN, Klavs JESPERSEN
  • Publication number: 20230415426
    Abstract: The present invention relates to a method of manufacturing a wind turbine blade (10), comprising the steps of placing a fibre lay-up including one or more fibre layers on the mould surface of a blade mould (60), arranging a load-bearing structure (45) and a core member (62) on the fibre lay-up such that the core member (62) is arranged between the load-bearing structure (45) and the leading edge (18) and/or between the load-bearing structure (45) and the trailing edge (20), and infusing resin into the blade mould to impregnate the fibre lay-up. The core member (62) comprises a first hole (64) with a circular cross section, a first cylindrical insert (70) rotatably arranged within the first hole (64) of the core member (62), the first cylindrical insert (70) having a central axis (71). A recess (80) is formed in the first cylindrical insert (70), wherein the recess (80) is arranged eccentrically with respect to the central axis (71) of the first cylindrical insert (70).
    Type: Application
    Filed: November 16, 2021
    Publication date: December 28, 2023
    Inventors: Klavs JESPERSEN, Lars NIELSEN
  • Publication number: 20230400009
    Abstract: A flow-enhancing fabric extends in a longitudinal direction and in a transverse direction. The fabric includes a plurality of fibre layers including a first fibre layer and a second fibre layer arranged upon each other, the first fibre layer has a first plurality of fibre bundles oriented in parallel in a first fibre direction and has a plurality of first glass fibre bundles and a number of first carbon fibre bundles. The second fibre layer has a second plurality of fibre bundles oriented in parallel in a second fibre direction different from the first direction and has a plurality of second glass fibre bundles and a number of second carbon fibre bundles. At least a number of first carbon fibre bundles intersect and contact a number of second carbon fibre bundles. The fabric has a plurality of monofilaments arranged between the first and second fibre layer along the transverse direction.
    Type: Application
    Filed: November 25, 2021
    Publication date: December 14, 2023
    Inventors: Jeppe JØRGENSEN, Klavs JESPERSEN, Ole NIELSEN
  • Publication number: 20230356484
    Abstract: A method of manufacturing a wind turbine blade part, such as a spar cap, by means of resin transfer moulding, preferably vacuum assisted resin transfer moulding, where fibre reinforcement material is impregnated with liquid resin in a mould cavity, wherein the mould cavity includes a rigid mould part having a mould surface defining a surface of the wind turbine blade part is described. The method includes the steps of: a) stacking a plurality of fibre reinforcement layers on the rigid mould part forming a fibre reinforcement stack, b) providing at least one flow-enhancing mat in the fibre reinforcement stack, c) sealing a second mould part, against the rigid mould part to form the mould cavity, d) optionally evacuating the mould cavity, e) supplying a resin to the mould cavity, and f) curing or hardening the resin in order to form the wind turbine blade part.
    Type: Application
    Filed: October 8, 2021
    Publication date: November 9, 2023
    Inventors: Morten Bak BRINK, Lars NIELSEN, Klavs JESPERSEN, Michael KOEFOED, Jens Zangenberg HANSEN, Henrik BARSLEV
  • Patent number: 11794443
    Abstract: A fabric and a method for making the same. The fabric includes a layer of unidirectionally oriented carbon fibre filaments sandwiched between a first layer of glass fibre rovings and a second layer of glass fibre rovings. The first layer of glass fibre rovings and the second layer of glass fibre rovings are linked by a connecting material.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: October 24, 2023
    Assignee: LM WIND POWER A/S
    Inventors: Jens Zangenberg Hansen, Michael Scholarth Koefoed, Klavs Jespersen, Lars Nielsen, Morten Rask-Nielsen
  • Publication number: 20230175476
    Abstract: A method of manufacturing a wind turbine blade, comprising the steps of: placing one or more shell fibre layers on a mould surface of a blade mould, placing a plurality of separately provided preforms directly on the one or more shell fibre layers in a stacked arrangement, infusing and curing the stacked preform arrangement, the one or more shell fibre layers together via a resin in mould cavity of the blade mould to form a wind turbine blade part with a spar cap integrated in a shell part providing part of the aerodynamic shape of the wind turbine blade.
    Type: Application
    Filed: May 8, 2020
    Publication date: June 8, 2023
    Inventors: Rama RAZEGHI, Paul Trevor HAYDEN, Klavs JESPERSEN, Michael LUND-LAVERICK
  • Publication number: 20230166464
    Abstract: The present invention relates to a method of manufacturing a wind turbine blade, comprising arranging one or more layers of fibre material and a preform in a mould (66), injecting the one or more layers of fibre material and the preform (76) with a curable resin, and curing the resin. The preform (76) is impregnated with a curing promoter such that the concentration of curing promoter varies spatially within the preform.
    Type: Application
    Filed: January 23, 2023
    Publication date: June 1, 2023
    Inventors: Lars NIELSEN, Klavs JESPERSEN
  • Publication number: 20230113689
    Abstract: A wind turbine blade and a method of manufacturing a wind turbine blade is disclosed. The wind turbine blade includes a tip blade segment and a root blade segment extending in opposite directions from a chord-wise joint, where each of the tip blade segment and the root blade segment includes a pressure side shell member and a suction side shell member. Further, wind turbine blade includes a beam structure. The beam structure includes a first section, where the first section is received at a receiving section of the root blade segment and a second section disposed in the tip blade segment and extending at an angle with respect to the first section, such that at least a portion of the tip blade segment is disposed outwardly with respect to a blade axis.
    Type: Application
    Filed: May 26, 2021
    Publication date: April 13, 2023
    Inventors: Lars NIELSEN, Klavs JESPERSEN
  • Patent number: 11607826
    Abstract: The present invention relates to a method and a mould system (66) for manufacturing at least two preforms for moulding a wind turbine blade. The preforms include at least one preform of a first shape and at least one preform of a second shape. The preform mould structure (68) has a moulding surface (70) of variable shape such that the shape of the moulding surface (70) can be varied at least between a first and a second configuration by using actuators.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: March 21, 2023
    Assignee: LM WIND POWER INTERNATIONAL TECHNOLOGY II APS
    Inventors: Kristian Lehmann Madsen, Lars Nielsen, Klavs Jespersen
  • Publication number: 20230071090
    Abstract: A main laminate forming a load carrying structure for a wind turbine blade, the main laminate extending in a spanwise direction from a proximal end through a transition region to a distal end, wherein the main laminate comprises: a top side, a bottom side, and a thickness direction extending between the top side and the bottom side; a pultrusion portion including a bottom pultrusion element extending to a transition end of a transition portion located in the transition region of the main laminate; a plurality of stacked fibre-reinforced elements including bottom and top fibre-reinforced elements extending to a transition end of a transition portion located in the transition region, wherein the pultrusion portion and the plurality of fibre-reinforced elements are connected by a joint in the transition region of the main laminate.
    Type: Application
    Filed: April 7, 2020
    Publication date: March 9, 2023
    Inventors: Rama RAZEGHI, Klavs JESPERSEN, Kristen HANRAHAN
  • Patent number: 11590721
    Abstract: The present invention relates to a method and system for manufacturing a wind turbine blade. The method comprising the steps of forming a cured blade element (102) of a first blade shell, forming a cured blade element (102) of a second blade shell, transferring the cured blade element (102) of the first blade shell to a first cradle (92), and transferring the cured blade element (102) of the second blade shell to a second cradle (94). Each cradle comprises a mould body (96, 98) having a moulding surface for abutting against a surface of the cured blade element to advantageously form a seal therebetween.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: February 28, 2023
    Assignee: LM WIND POWER INTERNATIONAL TECHNOLOGY II APS
    Inventors: Klavs Jespersen, Lars Nielsen
  • Patent number: 11590718
    Abstract: The present invention relates to a method of manufacturing a wind turbine blade, comprising arranging one or more layers of fibre material and a preform in a mould (66), injecting the one or more layers of fibre material and the preform (76) with a curable resin, and curing the resin. The preform (76) is impregnated with a curing promoter such that the concentration of curing promoter varies spatially within the preform.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: February 28, 2023
    Assignee: LM WIND POWER INTERNATIONAL TECHNOLOGY II APS
    Inventors: Lars Nielsen, Klavs Jespersen
  • Patent number: 11577475
    Abstract: This invention relates to a wind turbine blade component, a method of manufacturing such a wind turbine blade component and a wind turbine blade comprising the wind turbine blade component. The wind turbine blade component comprising a stack of layers arranged in a first group and in a second group, wherein the layers of each group has the same width. The layers of each group is continuously offset in an edgewise direction to form a tapered edge profile. The first group of layers may be arranged relative to the second group, or in an alternating order. The layers of the first group may further have a first length which is greater than a second length of the layers of the second group.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: February 14, 2023
    Assignee: LM WIND POWER INTERNATIONAL TECHNOLOGY II APS
    Inventors: Michael Lund-Laverick, Klavs Jespersen, Kristian Lehmann Madsen, Karsten Schibsbye
  • Publication number: 20230016436
    Abstract: The present invention relates to a reinforcing structure, such as a reinforcing structure for reinforcing a wind turbine blade, comprising: a first composite element layer comprising at least two carbon fibre reinforced composite elements; a second composite element layer comprising one or more carbon fibre reinforced composite elements; an interlayer sandwiched at least partly between the first and the second composite element layer, the interlayer comprising an electrically conductive portion and a non-conductive portion surrounding the conductive portion, the conductive portion abutting exactly two of the carbon fibre reinforced composite elements comprised in the first composite element layer. A method for manufacturing such a structure is also provided.
    Type: Application
    Filed: April 15, 2020
    Publication date: January 19, 2023
    Inventors: Klavs JESPERSEN, Rama RAZEGHI, Dylan REDMOND-GRAY
  • Publication number: 20220396051
    Abstract: A fabric and a method for making the same. The fabric includes a layer of unidirectionally oriented carbon fibre filaments sandwiched between a first layer of glass fibre rovings and a second layer of glass fibre rovings. The first layer of glass fibre rovings and the second layer of glass fibre rovings are linked by a connecting material.
    Type: Application
    Filed: July 24, 2020
    Publication date: December 15, 2022
    Inventors: Jens ZANGENBERG HANSEN, Michael SCHOLARTH KOEFOED, Klavs JESPERSEN, Lars NIELSEN, Morten RASK-NIELSEN
  • Patent number: 11486350
    Abstract: The present invention relates to wind turbine blade and a method of manufacturing the wind turbine blade. An aerodynamic shell is provided with a recess (70) at its inner surface, the recess (70) extending with-in the shell along a spanwise direction of the blade. A first region of the recess (70) has a first width and a second region of the recess (70) has a second width exceeding the first width. A transition region is provided between the first region and the second region of the re-cess. A first and a second spar cap (80, 82) are arranged within the shell.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: November 1, 2022
    Assignee: LM WIND POWER A/S
    Inventors: Klavs Jespersen, Lars Nielsen