Patents by Inventor Ko Kudo

Ko Kudo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10144770
    Abstract: Disclosed herein are chimeric receptors comprising an extracellular domain with affinity and specific for the Fc portion of an immunoglobulin molecule (Ig) (e.g., an extracellular ligand-binding domain of F158 FCGR3A or V158 FCGR3A variant); a transmembrane domain (e.g., a transmembrane domain of CD8?); at least one co-stimulatory signaling domain (e.g., a co-stimulatory signaling domain of 4-1BB); and a cytoplasmic signaling domain comprising an immunoreceptor tyrosine-based activation motif (ITAM) (e.g., a cytoplasmic signaling domain of CD3?). Also provided herein are nucleic acids encoding such chimeric receptors and immune cells expressing the chimeric receptors. Such immune cells can be used to enhance antibody-dependent cell-mediated cytotoxicity and/or to enhance antibody-based immunotherapy, such as cancer immunotherapy.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: December 4, 2018
    Assignees: National University of Singapore, St. Jude Children's Research Hospital, Unum Therapeutics Inc.
    Inventors: Dario Campana, Ko Kudo, Charles Wilson, Kathleen McGinness
  • Publication number: 20150139943
    Abstract: Disclosed herein are chimeric receptors comprising an extracellular domain with affinity and specific for the Fc portion of an immunoglobulin molecule (Ig) (e.g., an extracellular ligand-binding domain of F158 FCGR3A or V158 FCGR3A variant); a transmembrane domain (e.g., a transmembrane domain of CD8?); at least one co-stimulatory signaling domain (e.g., a co-stimulatory signaling domain of 4-1BB); and a cytoplasmic signaling domain comprising an immunoreceptor tyrosine-based activation motif (ITAM) (e.g., a cytoplasmic signaling domain of CD3?). Also provided herein are nucleic acids encoding such chimeric receptors and immune cells expressing the chimeric receptors. Such immune cells can be used to enhance antibody-dependent cell-mediated cytotoxicity and/or to enhance antibody-based immunotherapy, such as cancer immunotherapy.
    Type: Application
    Filed: October 17, 2014
    Publication date: May 21, 2015
    Applicants: National University of Singapore, St. Jude Children's Research Hospital
    Inventors: Dario Campana, Ko Kudo