Patents by Inventor Koen Gerhardus Winkels

Koen Gerhardus Winkels has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11914942
    Abstract: A method for determining a deformation of a resist in a patterning process. The method involves obtaining a resist deformation model of a resist having a pattern, the resist deformation model configured to simulate a fluid flow of the resist due to capillary forces acting on a contour of at least one feature of the pattern; and determining, via the resist deformation model, a deformation of a resist pattern to be developed based on an input pattern to the resist deformation model.
    Type: Grant
    Filed: June 5, 2023
    Date of Patent: February 27, 2024
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Chrysostomos Batistakis, Roger Josef Maria Jeurissen, Koen Gerhardus Winkels
  • Publication number: 20230334217
    Abstract: A method for determining a deformation of a resist in a patterning process. The method involves obtaining a resist deformation model of a resist having a pattern, the resist deformation model configured to simulate a fluid flow of the resist due to capillary forces acting on a contour of at least one feature of the pattern; and determining, via the resist deformation model, a deformation of a resist pattern to be developed based on an input pattern to the resist deformation model.
    Type: Application
    Filed: June 5, 2023
    Publication date: October 19, 2023
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Chrysostomos BATISTAKIS, Roger Josef Maria JEURISSEN, Koen Gerhardus WINKELS
  • Patent number: 11709988
    Abstract: A method for determining a deformation of a resist in a patterning process. The method involves obtaining a resist deformation model of a resist having a pattern, the resist deformation model configured to simulate a fluid flow of the resist due to capillary forces acting on a contour of at least one feature of the pattern; and determining, via the resist deformation model, a deformation of a resist pattern to be developed based on an input pattern to the resist deformation model.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: July 25, 2023
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Chrysostomos Batistakis, Roger Josef Maria Jeurissen, Koen Gerhardus Winkels
  • Publication number: 20230048723
    Abstract: Substrate tables for lithography and methods of handling a substrate. In one arrangement, a substrate table includes one or more membranes. An actuation system deforms each membrane to change a height of a portion of the membrane. In another arrangement, a substrate table includes one or more membranes and a clamping system for clamping a substrate to the substrate table, wherein the clamping deforms each membrane by pressing the substrate against the membrane.
    Type: Application
    Filed: January 20, 2021
    Publication date: February 16, 2023
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Nicolaas TEN KATE, Koen Gerhardus WINKELS, Michel Ben Isel HABETS
  • Publication number: 20230004092
    Abstract: Substrate tables and methods of manufacturing substrate supports for substrate tables. In one arrangement, a plurality of holes are formed through a base member. A burl formation member is joined to the base member. A plurality of burl structures are formed in the burl formation member. Each burl structure includes a distal surface that contacts, in use, a substrate being supported. Each burl structure has an opening to at least one of the holes formed through the base member.
    Type: Application
    Filed: November 20, 2020
    Publication date: January 5, 2023
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Michael Marinus Anna STEUR, Nicolaas TEN KATE, Siegfried Alexander TROMP, Koen Gerhardus WINKELS, Antonius Franciscus Johanne DE GROOT
  • Publication number: 20220390850
    Abstract: A substrate support is configured to support a substrate. The substrate support comprises a plurality of burls protruding from a base surface of the substrate support. The burls have distal ends in a plane for supporting a lower surface of the substrate with a gap between the base surface of the substrate support and the lower surface of the substrate. The substrate support comprises a liquid supply channel for supplying a conductive liquid to the gap so as to bridge the gap between the base surface of the substrate support and the lower surface of the substrate, thereby allowing charge to pass between the substrate support and the substrate. The substrate support has a controlled electrical potential such that charge distribution at the lower surface of the substrate can be manipulated.
    Type: Application
    Filed: October 16, 2020
    Publication date: December 8, 2022
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Ruud Antonius Catharina Maria BEERENS, Koen Gerhardus WINKELS, Dirk Willem HARBERTS, Lucas Henricus Johannes STEVENS, Dennis Dominic VAN DER VOORT, Edwin Johannes Cornelis BOS, George Alois Leonie LEENKNEGT, Nicolaas TEN KATE
  • Publication number: 20220075275
    Abstract: A method for determining a deformation of a resist in a patterning process. The method involves obtaining a resist deformation model of a resist having a pattern, the resist deformation model configured to simulate a fluid flow of the resist due to capillary forces acting on a contour of at least one feature of the pattern; and determining, via the resist deformation model, a deformation of a resist pattern to be developed based on an input pattern to the resist deformation model.
    Type: Application
    Filed: December 13, 2019
    Publication date: March 10, 2022
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Chrysostomos BATISTAKIS, Roger Josef Maria JEURISSEN, Koen Gerhardus WINKELS
  • Patent number: 10904994
    Abstract: A supply system for an extreme ultraviolet (EUV) light source includes an apparatus configured to be fluidly coupled to a reservoir configured to contain target material that produces EUV light in a plasma state, the apparatus including two or more target formation units, each one of the target formation units including: a nozzle structure configured to receive the target material from the reservoir, the nozzle structure including an orifice configured to emit the target material to a plasma formation location. The supply system further includes a control system configured to select a particular one of the target formation units for emitting the target material to the plasma formation location. An apparatus for a supply system of an extreme ultraviolet (EUV) light source includes a MEMS system fabricated in a semiconductor device fabrication technology, and the MEMS system including a nozzle structure configured to be fluidly coupled to a reservoir.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: January 26, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Koen Gerhardus Winkels, Georgiy O. Vaschenko, Theodorus Wilhelmus Driessen, Johan Frederik Dijksman, Bastiaan Lambertus Wilhelmus Marinus van de Ven, Wilhelmus Henricus Theodorus Maria Aangenent
  • Publication number: 20200128657
    Abstract: A supply system for an extreme ultraviolet (EUV) light source includes an apparatus configured to be fluidly coupled to a reservoir configured to contain target material that produces EUV light in a plasma state, the apparatus including two or more target formation units, each one of the target formation units including: a nozzle structure configured to receive the target material from the reservoir, the nozzle structure including an orifice configured to emit the target material to a plasma formation location. The supply system further includes a control system configured to select a particular one of the target formation units for emitting the target material to the plasma formation location. An apparatus for a supply system of an extreme ultraviolet (EUV) light source includes a MEMS system fabricated in a semiconductor device fabrication technology, and the MEMS system including a nozzle structure configured to be fluidly coupled to a reservoir.
    Type: Application
    Filed: November 1, 2019
    Publication date: April 23, 2020
    Inventors: Koen Gerhardus Winkels, Georgiy O. Vaschenko, Theodorus Wilhelmus Driessen, Johan Frederik Dijksman, Bastiaan Lambertus Wilhelmus Marinus van de Ven, Wilhelmus Henricus Theodorus Maria Aangenent
  • Patent number: 10499485
    Abstract: A supply system for an extreme ultraviolet (EUV) light source includes an apparatus configured to be fluidly coupled to a reservoir configured to contain target material that produces EUV light in a plasma state, the apparatus including two or more target formation units, each one of the target formation units including: a nozzle structure configured to receive the target material from the reservoir, the nozzle structure including an orifice configured to emit the target material to a plasma formation location. The supply system further includes a control system configured to select a particular one of the target formation units for emitting the target material to the plasma formation location. An apparatus for a supply system of an extreme ultraviolet (EUV) light source includes a MEMS system fabricated in a semiconductor device fabrication technology, and the MEMS system including a nozzle structure configured to be fluidly coupled to a reservoir.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: December 3, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Koen Gerhardus Winkels, Georgiy O. Vaschenko, Theodorus Wilhelmus Driessen, Johan Frederik Dijksman, Bastiaan Lambertus Wilhelmus Marinus van de Ven, Wilhelmus Henricus Theodorus Maria Aangenent
  • Patent number: 10481498
    Abstract: Droplet generators, such as used in an EUV radiation source, and associated EUV radiation sources and lithographic apparatuses. A droplet generator can include a nozzle assembly to emit the fuel as droplets, the nozzle assembly being within a pressurized environment at substantially the same pressure as the fuel pressure within the droplet generator. A droplet generator can include an actuator in contact with and biased against a pump chamber by means of a biasing mechanism having an actuator support biased against the actuator. The actuator acts on the fuel within the pump chamber to create droplets. The actuator support has a material with a greater coefficient of thermal expansion than its surrounding structure, such that it is moveable within the surrounding structure at ambient temperature, but expands against the surrounding structure at an operating temperature, so as to clamp the actuator support against the surrounding structure at the operating temperature.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: November 19, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Johan Frederik Dijksman, Bastiaan Lambertus Wilhelmus Marinus van de Ven, Koen Gerhardus Winkels, Theodorus Wilhelmus Driessen, Georgiy O. Vaschenko, Peter Michael Baumgart, Wilhelmus Henricus Theodorus Maria Aangenent, Jan Okke Nieuwenkamp, Wim Ronald Kampinga, Jari Ruotsalainen
  • Publication number: 20180364580
    Abstract: Droplet generators, such as used in an EUV radiation source, and associated EUV radiation sources and lithographic apparatuses. A droplet generator can include a nozzle assembly to emit the fuel as droplets, the nozzle assembly being within a pressurized environment at substantially the same pressure as the fuel pressure within the droplet generator. A droplet generator can include an actuator in contact with and biased against a pump chamber by means of a biasing mechanism having an actuator support biased against the actuator. The actuator acts on the fuel within the pump chamber to create droplets. The actuator support has a material with a greater coefficient of thermal expansion than its surrounding structure, such that it is moveable within the surrounding structure at ambient temperature, but expands against the surrounding structure at an operating temperature, so as to clamp the actuator support against the surrounding structure at the operating temperature.
    Type: Application
    Filed: December 15, 2016
    Publication date: December 20, 2018
    Inventors: Johan Frederik Dijksman, Bastiaan Lambertus Wilhelmus Marinus van de Ven, Koen Gerhardus Winkels, Theodorus Wilhelmus Driessen, Georgiy O. Vaschenko, Peter Michael Baumgart, Wilhelmus Henricus Theodorus Maria Aangenent, Jan Okke Nieuwenkamp, Wim Ronald Kampinga, Jari Ruotsalainen
  • Publication number: 20180368242
    Abstract: A supply system for an extreme ultraviolet (EUV) light source includes an apparatus configured to be fluidly coupled to a reservoir configured to contain target material that produces EUV light in a plasma state, the apparatus including two or more target formation units, each one of the target formation units including: a nozzle structure configured to receive the target material from the reservoir, the nozzle structure including an orifice configured to emit the target material to a plasma formation location. The supply system further includes a control system configured to select a particular one of the target formation units for emitting the target material to the plasma formation location. An apparatus for a supply system of an extreme ultraviolet (EUV) light source includes a MEMS system fabricated in a semiconductor device fabrication technology, and the MEMS system including a nozzle structure configured to be fluidly coupled to a reservoir.
    Type: Application
    Filed: April 25, 2018
    Publication date: December 20, 2018
    Inventors: Koen Gerhardus Winkels, Georgiy O. Vaschenko, Theodorus Wilhelmus Driessen, Johan Frederik Dijksman, Bastiaan Lambertus Wilhelmus Marinus van de Ven, Wilhelmus Henricus Theodorus Maria Aangenent
  • Patent number: 9442380
    Abstract: A radiation source (e.g., LPP—laser produced plasma source) for generation of extreme UV (EUV) radiation has at least two fuel particle streams having different trajectories. Each stream is directed to cross the path of an excitation (laser) beam focused at a plasma formation region, but the trajectories are spaced apart at the plasma formation region, and the streams phased, so that only one stream has a fuel particle in the plasma formation region at any time, and so that when a fuel particle from one stream is generating plasma and EUV radiation at the plasma generation region, other fuel particles are sufficiently spaced so as to be substantially unaffected by the plasma. The arrangement permits potential doubling of the radiation intensity achievable for a particular fuel particle size.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: September 13, 2016
    Assignee: ASML Netherlands B.V.
    Inventors: Ramin Badie, Vadim Yevgenyevich Banine, Johan Frederik Dijksman, Antonius Theodorus Wilhelmus Kempen, Andrei Mikhailovich Yakunin, Hendrikus Robertus Marie Van Greevenbroek, Koen Gerhardus Winkels
  • Publication number: 20150268559
    Abstract: A radiation source (e.g., LPP— laser produced plasma source) for generation of extreme UV (EUV) radiation has at least two fuel particle streams having different trajectories. Each stream is directed to cross the path of an excitation (laser) beam focused at a plasma formation region, but the trajectories are spaced apart at the plasma formation region, and the streams phased, so that only one stream has a fuel particle in the plasma formation region at any time, and so that when a fuel particle from one stream is generating plasma and EUV radiation at the plasma generation region, other fuel particles are sufficiently spaced so as to be substantially unaffected by the plasma. The arrangement permits potential doubling of the radiation intensity achievable for a particular fuel particle size.
    Type: Application
    Filed: October 3, 2013
    Publication date: September 24, 2015
    Applicant: ASML Netherlands B.V.
    Inventors: Ramin Badie, Vadim Yevgenyevich Banine, Johan Frederik Dijksman, Antonius Theodorus Wilhelmus Kempen, Andrei Mikhailovich Yakunin, Hendrikus Robertus Marie Van Greevenbroek, Koen Gerhardus Winkels