Patents by Inventor Koenraad Vandewalle

Koenraad Vandewalle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230192500
    Abstract: The invention relates to a process for the production of phosgene comprising a gas phase reaction of carbon monoxide and chlorine in the presence of a carbon catalyst in a multi-tubular reactor, wherein the carbon catalyst comprises an amount of mesopores having a pore diameter in the range of from 2 to 50 nm of at least 0.45 ml/g of the total pore volume and the use of a carbon catalyst comprising an amount of mesopores having a pore diameter in the range of from 2 to 50 nm of at least 0.45 ml/g of the total pore volume, for the production of phosgene and a reaction mixture for preparing phosgene, the mixture comprising a catalyst for preparing phosgene comprising a porous material comprising carbon, micropores and mesopores, wherein said micropores have a pore diameter of less than 2 nm and wherein said mesopores have a pore diameter in the range of from 2 to 50 nm, wherein the volume of the mesopores of the porous material is of at least 0.
    Type: Application
    Filed: May 10, 2021
    Publication date: June 22, 2023
    Inventors: Gerhard OLBERT, Benjamin KRON, Jochen GAUER, Jens FERBITZ, Torsten MATTKE, Kai THIELE, Peter VAN DEN ABEEL, Koenraad VANDEWALLE, Kirill BRAMNIK, Jim BRANDTS
  • Publication number: 20230074789
    Abstract: The invention relates to a process for producing phosgene by gas phase reaction of carbon monoxide and chlorine in the presence of a catalyst in a reactor that comprises a plurality of contact tubes arranged parallel to one another, which contact tubes are filled with the catalyst and around which at least one fluid heat transfer medium flows, a feed stream of a mixture of a chlorine input stream and a carbon monoxide input stream being conducted into the contact tubes and reacted to form a phosgene-containing product gas mixture, characterised in that the product gas mixture is discharged from the contact tubes at an outlet end of the contact tubes.
    Type: Application
    Filed: January 26, 2021
    Publication date: March 9, 2023
    Inventors: Torsten MATTKE, Gerhard OLBERT, Jens FERBITZ, Koenraad VANDEWALLE, Kai THIELE, Peter VAN DEN ABEEL, Jim BRANDTS
  • Publication number: 20220332587
    Abstract: The invention relates to a process for producing phosgene by gas-phase reaction of carbon monoxide and chlorine in the presence of a catalyst in a reactor which comprises a plurality of parallel catalyst tubes which are filled with the catalyst and around which at least one fluid heat transfer medium flows, where a feed stream of a mixture of a chlorine input stream and a carbon monoxide input stream is fed into the catalyst tubes and is allowed to react to give a phosgene-comprising product gas mixture, wherein the reaction is carried out at an area load of more than 2.75 kg of phosgene/m2s. The invention also provides a reactor for carrying out the process.
    Type: Application
    Filed: April 20, 2020
    Publication date: October 20, 2022
    Inventors: Gerhard OLBERT, Jens FERBITZ, Kai THIELE, Peter VAN DEN ABEEL, Koenraad VANDEWALLE, Jim BRANDTS, Torsten MATTKE
  • Publication number: 20220212936
    Abstract: The present invention relates to a process for preparing phosgene by reacting chlorine with carbon monoxide over an activated carbon catalyst, wherein the content of chlorine oxides in the chlorine feed stream is low, to an apparatus for preparation of phosgene and to the use of the phosgene prepared by the process of the invention.
    Type: Application
    Filed: April 14, 2020
    Publication date: July 7, 2022
    Inventors: Torsten MATTKE, Gerhard OLBERT, Jochen GAUER, Kai THIELE, Koenraad VANDEWALLE, Jens FERBITZ, Peter VAN DEN ABEEL
  • Patent number: 9115049
    Abstract: A process for obtaining pure aniline contains catalytically hydrogenating nitrobenzene, to obtain a reaction mixture, separating the reaction mixture into a gas phase containing hydrogen and a liquid phase, liquid/liquid phase separating the liquid phase to obtain an aqueous phase and also crude aniline containing water as an organic phase, distillatively pre-purifying the crude aniline by removing the water via an overhead stream of a first distillation column to obtain a first bottom stream, feeding the first bottom stream as a feed stream to a pure column from which a pure aniline stream is taken off at the top and a second bottom stream containing high boilers is taken off, and passing the second bottom stream to incineration, by pumping the second bottom stream through heated pipelines and by adding methanol, ethanol, propanol, and/or acetone to the second bottom stream.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: August 25, 2015
    Assignee: BASF SE
    Inventors: Koenraad Vandewalle, Karen Vercruysse, Leo Denissen, Filip Deberdt, Hendrik De Winne, Bart Van De Voorde, Michael Reiser, Samuel Neto
  • Publication number: 20140107378
    Abstract: A process for obtaining pure aniline contains catalytically hydrogenating nitrobenzene, to obtain a reaction mixture, separating the reaction mixture into a gas phase containing hydrogen and a liquid phase, liquid/liquid phase separating the liquid phase to obtain an aqueous phase and also crude aniline containing water as an organic phase, distillatively pre-purifying the crude aniline by removing the water via an overhead stream of a first distillation column to obtain a first bottom stream, feeding the first bottom stream as a feed stream to a pure column from which a pure aniline stream is taken off at the top and a second bottom stream containing high boilers is taken off, and passing the second bottom stream to incineration, by pumping the second bottom stream through heated pipelines and by adding methanol, ethanol, propanol, and/or acetone to the second bottom stream.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 17, 2014
    Applicant: BASF SE
    Inventors: Koenraad VANDEWALLE, Karen VERCRUYSSE, Leo DENISSEN, Filip DEBERDT, Hendrik DE WINNE, Bart VAN DE VOORDE, Michael REISER, Samuel NETO
  • Patent number: 7186867
    Abstract: Process for preparing polyether polyols having an end block of ethylene oxide by addition of alkylene oxides onto H-functional starter substances, in which A) a polyether polyol precursor is prepared by means of double metal cyanide (DMC) catalysis in a semicontinuous mode of operation in which previously prepared polyether polyol together with the DMC catalyst are placed in a reactor and H-functional starter substance and propylene oxide are added continuously, B) the polyether polyol precursor from stage A) is reacted with propylene oxide or an ethylene oxide/propylene oxide mixture in the presence of the DMC catalyst in a continuously operating reactor to give a polyether polyol intermediate, C) the intermediate from stage B) is mixed with an alkali metal hydroxide as catalyst and D) reacted with ethylene oxide in a continuously operating reactor to give the final product, E) the catalyst is separated off from the final product obtained in stage D).
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: March 6, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Thomas Ostrowski, Raimund Ruppel, Gerd Höppner, Sascha Bergmann, Koenraad Vandewalle, Eva Baum
  • Publication number: 20050240063
    Abstract: Process for preparing polyether polyols having an end block of ethylene oxide by addition of alkylene oxides onto H-functional starter substances, in which A) a polyether polyol precursor is prepared by means of double metal cyanide (DMC) catalysis in a semicontinuous mode of operation in which previously prepared polyether polyol together with the DMC catalyst are placed in a reactor and H-functional starter substance and propylene oxide are added continuously, B) the polyether polyol precursor from stage A) is reacted with propylene oxide or an ethylene oxide/propylene oxide mixture in the presence of the DMC catalyst in a continuously operating reactor to give a polyether polyol intermediate, C) the intermediate from stage B) is mixed with an alkali metal hydroxide as catalyst and D) reacted with ethylene oxide in a continuously operating reactor to give the final product, E) the catalyst is separated off from the final product obtained in stage D).
    Type: Application
    Filed: April 21, 2004
    Publication date: October 27, 2005
    Inventors: Thomas Ostrowski, Raimund Ruppel, Gerd Hoppner, Sascha Bergmann, Koenraad Vandewalle, Eva Baum