Patents by Inventor Kohei Ishii

Kohei Ishii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951675
    Abstract: A surface of a workpiece has a smooth region, and a stepped region including a step. A three-dimensional object printing method includes first print operation of ejecting liquid from a head onto the smooth region, and second print operation, antecedent to or subsequent to the first print operation, of ejecting liquid from the head onto the stepped region. The amount of change in an angle of ejection, which is angle formed by a first normal line and a second normal line, during execution of the second print operation is larger than the amount of change in the angle of ejection during execution of the first print operation. The first normal line is a line normal to the ejection face. The second normal line is a line normal to the surface of the workpiece at a point of intersection with the first normal line.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: April 9, 2024
    Assignee: Seiko Epson Corporation
    Inventors: Kohei Utsunomiya, Masayuki Okuyama, Yuki Ishii
  • Publication number: 20240087007
    Abstract: An information processing device includes an associator, an extractor, and an outputter. The associator is configured to associate each of a series of pieces of history data related to at least any of deposits and withdrawals of a user with any of a plurality of behaviors related to an economic activity of the user. The extractor is configured to extract an inducement destination candidate according to behavioral characteristics of the user based on changes along a time series of each of the plurality of behaviors. The outputter is configured to output information indicating the extracted inducement destination candidate to a predetermined output destination.
    Type: Application
    Filed: September 8, 2023
    Publication date: March 14, 2024
    Inventors: Shohei KITAZATO, Li YU, Satoshi TOYOKURA, Shoya MICHIMAE, Tomoaki ISHII, Kohei FUJINO, l-Min CHIEN, Yuta DATE, Yoshifumi SATAKE
  • Patent number: 11923154
    Abstract: A trigger switch according to one or more embodiments may include a first conductive plate (movable electrode) movable in response to movement of a trigger receiving a depressing operation, and a second fixed electrode (fixed electrode) located adjacent to a movable range of the first conductive plate with a space in between. The second fixed electrode forms a capacitor together with the first conductive plate. The capacitor formed by the first conductive plate and the second fixed electrode has a capacitance that changes as the first conductive plate moves.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: March 5, 2024
    Assignee: OMRON Corporation
    Inventors: Takumi Fujihara, Ryoji Shimizu, Kohei Fujio, Akihiro Ishii, Taiki Koyama, Kazushi Maeta
  • Patent number: 11901117
    Abstract: A method for manufacturing a powder magnetic core, the method including: forming a soft magnetic powder (SMP) layer by putting an SMP having a surface on which an insulating coating film is formed into a space surrounded by a lower punch and a die; forming a pressed powder by compressing the SMP layer in the die by the lower punch and an upper punch; and causing the pressed powder and the die to slide relative to each other and then removing the pressed powder from the die is provided. In forming the SMP layer, a different powder different from the SMP is put into the space before and after the SMP is put into the space and a different powder layer having a spring back rate higher than that of the SMP layer by 0.6-1.1% is formed on upper and lower sides of the SMP layer.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: February 13, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroto Nagaki, Kazumichi Nakatani, Kohei Ishii
  • Publication number: 20230065875
    Abstract: An apparatus for forming E-shaped or U-shaped dust cores includes: a die; an upper punch arranged to be insertable and removable into and from the die; a lower punch arranged so as to face the upper punch and to be insertable and removable into and from the die; and a core rod arranged to be insertable and removable into and from the upper punch and the lower punch. The upper punch and the lower punch each has a horizontal cross-sectional shape corresponding to the horizontal cross-sectional shape of two dust cores that are arranged distant from each other with their respective magnetic pole surfaces facing each other. The core rod has a horizontal cross-sectional shape corresponding to the horizontal cross-sectional shape of a hollow part formed between the two dust cores that are arranged distant from each other with their respective magnetic pole surfaces facing each other.
    Type: Application
    Filed: June 28, 2022
    Publication date: March 2, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Kohei ISHII
  • Publication number: 20220020531
    Abstract: A method for manufacturing a powder magnetic core, the method including: forming a soft magnetic powder (SMP) layer by putting an SMP having a surface on which an insulating coating film is formed into a space surrounded by a lower punch and a die; forming a pressed powder by compressing the SMP layer in the die by the lower punch and an upper punch; and causing the pressed powder and the die to slide relative to each other and then removing the pressed powder from the die is provided. In forming the SMP layer, a different powder different from the SMP is put into the space before and after the SMP is put into the space and a different powder layer having a spring back rate higher than that of the SMP layer by 0.6-1.1% is formed on upper and lower sides of the SMP layer.
    Type: Application
    Filed: June 10, 2021
    Publication date: January 20, 2022
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroto NAGAKI, Kazumichi NAKATANI, Kohei ISHII
  • Publication number: 20200294702
    Abstract: A method for manufacturing a powder magnetic core according to an aspect includes filling a case with a soft magnetic powder obtained by pulverizing a soft magnetic foil having an amorphous structure or a nanocrystal structure, applying at least one of a vibration and a magnetic field to the soft magnetic powder contained in the case and thereby aligning the soft magnetic powder, and injecting a curable resin into the case, impregnating the aligned soft magnetic powder with the curable resin, and then curing the curable resin while deaerating the curable resin under a reduced pressure.
    Type: Application
    Filed: February 7, 2020
    Publication date: September 17, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kohei ISHII, Masaki SUGIYAMA, Hiroaki HATSUYAMA
  • Patent number: 10535454
    Abstract: Provided is a compressed powder core that can suppress a decrease in the inductance even when a high magnetic field (of greater than or equal to 40 kA/m) is applied to the compressed powder core while suppressing an iron loss and a decrease in the strength of the compressed powder core. The compressed powder core 1A has soft magnetic particles 11A and aluminum nitride layers 12A formed on the surface layers of the respective soft magnetic particles 11A. The compressed powder core 1A has a ratio of the first differential relative permeability ??L to the second differential relative permeability ??H satisfying a relationship of ??L/??H?6, and has a magnetic flux density of greater than or equal to 1.4 T when a magnetic field of 60 kA/m is applied. The soft magnetic particles of the compressed powder core 1A contain Si in the range of 1.0 to 3.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: January 14, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daisuke Okamoto, Toshimitsu Takahashi, Sinjiro Saigusa, Kohei Ishii, Naoki Iwata, Jung Hwan Hwang, Masashi Ohtsubo, Takeshi Hattori, Masashi Hara
  • Patent number: 10497500
    Abstract: A powder magnetic core having excellent specific resistance or strength. The powder magnetic core has soft magnetic particles, first coating layers that coat the surfaces of the soft magnetic particles and include aluminum nitride, and second coating layers that coat at least a part of the surfaces of the first coating layers and include a low-melting-point glass having a softening point lower than an annealing temperature for the soft magnetic particles. The first coating layers including aluminum nitride are excellent in the wettability to the low-melting-point glass which constitutes the second coating layers and suppress diffusion of constitutional elements between the soft magnetic particles and the low-melting-point glass of the second coating layers. The powder magnetic core can stably exhibit a higher specific resistance and higher strength than the prior art owing to such a synergistic action of the first coating layers and second coating layers.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: December 3, 2019
    Assignee: TOYOTA JIDOSHA KABUHIKI KAISHA
    Inventors: Masashi Ohtsubo, Masaaki Tani, Takeshi Hattori, Jung hwan Hwang, Masashi Hara, Shin Tajima, Naoki Iwata, Shinjiro Saigusa, Kohei Ishii, Daisuke Okamoto, Toshimitsu Takahashi
  • Publication number: 20190214172
    Abstract: A dust core includes soft magnetic particles, a first coating layer, a second coating layer, and a third coating layer. The first coating layer is made of aluminum oxide with which at least a part of surfaces of the soft magnetic particles are coated. The second coating layer is made of aluminum nitride with which at least a part of a surface of the first coating layer is coated. The third coating layer is made of low-melting-point glass with which at least a part of a surface of the second coating layer is coated. The low-melting-point glass has a softening point lower than an annealing temperature of the soft magnetic particles.
    Type: Application
    Filed: March 18, 2019
    Publication date: July 11, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masashi OHTSUBO, Masaaki TANI, Takeshi HATTORI, Junghwan HWANG, Masashi HARA, Shin TAJIMA, Shinjiro SAIGUSA, Kohei ISHII, Daisuke OKAMOTO, Toshimitsu TAKAHASHI
  • Patent number: 9941039
    Abstract: A soft magnetic member is formed such that, when a differential relative permeability in an applied magnetic field of 100 A/m is represented by a first differential relative permeability ??L, and when a differential relative permeability in an applied magnetic field of 40 kA/m is represented by a second differential relative permeability ??H, a ratio of the first differential relative permeability ??L to the second differential relative permeability ??H satisfies a relationship of ??L/??H?10, and a magnetic flux density in an applied magnetic field of 60 kA/m is 1.15 T or higher.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: April 10, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daisuke Okamoto, Kiyotaka Onodera, Shinjiro Saigusa, Kohei Ishii, Masashi Ohtsubo, Junghwan Hwang, Masaaki Tani, Takeshi Hattori
  • Publication number: 20170263359
    Abstract: A powder magnetic core having excellent specific resistance or strength. The powder magnetic core has soft magnetic particles, first coating layers that coat the surfaces of the soft magnetic particles and include aluminum nitride, and second coating layers that coat at least a part of the surfaces of the first coating layers and include a low-melting-point glass having a softening point lower than an annealing temperature for the soft magnetic particles. The first coating layers including aluminum nitride are excellent in the wettability to the low-melting-point glass which constitutes the second coating layers and suppress diffusion of constitutional elements between the soft magnetic particles and the low-melting-point glass of the second coating layers. The powder magnetic core can stably exhibit a higher specific resistance and higher strength than the prior art owing to such a synergistic action of the first coating layers and second coating layers.
    Type: Application
    Filed: September 4, 2015
    Publication date: September 14, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masashi OHTSUBO, Masaaki TANI, Takeshi HATTORI, Jung hwan HWANG, Masashi HARA, Shin TAJIMA, Naoki IWATA, Shinjiro SAIGUSA, Kohei ISHII, Daisuke OKAMOTO, Toshimitsu TAKAHASHI
  • Publication number: 20170110227
    Abstract: Provided is a compressed powder core that can suppress a decrease in the inductance even when a high magnetic field (of greater than or equal to 40 kA/m) is applied to the compressed powder core while suppressing an iron loss and a decrease in the strength of the compressed powder core. The compressed powder core 1A has soft magnetic particles 11A and aluminum nitride layers 12A formed on the surface layers of the respective soft magnetic particles 11A. The compressed powder core 1A has a ratio of the first differential relative permeability ??L to the second differential relative permeability ??H satisfying a relationship of ??L/??H?6, and has a magnetic flux density of greater than or equal to 1.4 T when a magnetic field of 60 kA/m is applied. The soft magnetic particles of the compressed powder core 1A contain Si in the range of 1.0 to 3.
    Type: Application
    Filed: October 12, 2016
    Publication date: April 20, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daisuke OKAMOTO, Toshimitsu TAKAHASHI, Sinjiro SAIGUSA, Kohei ISHII, Naoki IWATA, Jung Hwan HWANG, Masashi OHTSUBO, Takeshi HATTORI, Masashi HARA
  • Publication number: 20160071636
    Abstract: A dust core includes soft magnetic particles, a first coating layer, a second coating layer, and a third coating layer. The first coating layer is made of aluminum oxide with which at least a part of surfaces of the soft magnetic particles are coated. The second coating layer is made of aluminum nitride with which at least a part of a surface of the first coating layer is coated. The third coating layer is made of low-melting-point glass with which at least a part of a surface of the second coating layer is coated. The low-melting-point glass has a softening point lower than an annealing temperature of the soft magnetic particles.
    Type: Application
    Filed: September 8, 2015
    Publication date: March 10, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masashi OHTSUBO, Masaaki Tani, Takeshi Hattori, Junghwan Hwang, Masashi Hara, Shin Tajima, Shinjiro Saigusa, Kohei Ishii, Daisuke Okamoto, Toshimitsu Takahashi
  • Publication number: 20150364235
    Abstract: A soft magnetic member is formed such that, when a differential relative permeability in an applied magnetic field of 100 A/m is represented by a first differential relative permeability ??L, and when a differential relative permeability in an applied magnetic field of 40 kA/m is represented by a second differential relative permeability ??H, a ratio of the first differential relative permeability ??L to the second differential relative permeability ??H satisfies a relationship of ??L/??H?10, and a magnetic flux density in an applied magnetic field of 60 kA/m is 1.15 T or higher.
    Type: Application
    Filed: June 12, 2015
    Publication date: December 17, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daisuke OKAMOTO, Kiyotaka ONODERA, Shinjiro SAIGUSA, Kohei ISHII, Masashi OHTSUBO, Junghwan HWANG, Masaaki TANI, Takeshi HATTORI
  • Patent number: 6917133
    Abstract: An air conditioner comprising a compressor including a compression unit and a permanent magnet rotating electric machine, wherein the permanent magnet rotating electric machine includes a stator, into which concentratively wound armature windings are inserted in such a way as to surround a plurality of teeth formed in a stator core, and a rotor having permanent magnets accommodated into a plurality of permanent magnet inserting holes formed in a rotor core. Each pair of adjacent ones of said permanent magnets is arranged generally in one of a convex V-shaped configuration and a convex U-shaped configuration with respect to a rotor axis, and a substantially V-shaped recess portion is formed between adjacent poles in outer circumferential surface portions of the rotor core.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: July 12, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Haruo Koharagi, Masaharu Senoh, Keiji Noma, Kohei Ishii, Kazuo Sato, Satoshi Kikuchi, Miyoshi Takahashi, Kouki Yamamoto
  • Publication number: 20030178905
    Abstract: An air conditioner comprising a compressor including a compression unit and a permanent magnet rotating electric machine, wherein the permanent magnet rotating electric machine includes a stator, into which concentratively wound armature windings are inserted in such a way as to surround a plurality of teeth formed in a stator core, and a rotor having permanent magnets accommodated into a plurality of permanent magnet inserting holes formed in a rotor core. Each pair of adjacent ones of said permanent magnets is arranged generally in one of a convex V-shaped configuration and a convex U-shaped configuration with respect to a rotor axis, and a substantially V-shaped recess portion is formed between adjacent poles in outer circumferential surface portions of the rotor core.
    Type: Application
    Filed: February 20, 2003
    Publication date: September 25, 2003
    Inventors: Haruo Koharagi, Masaharu Senoh, Keiji Noma, Kohei Ishii, Kazuo Sato, Satoshi Kikuchi, Miyoshi Takahashi, Kouki Yamamoto
  • Publication number: 20030057785
    Abstract: A permanent magnet rotating electric machine includes a stator having a plurality of teeth formed in a stator core, concentrated wound armature windings wound around the plurality of teeth, and a rotor having a plurality of holes formed in a rotor core for accommodating permanent magnets. Permanent magnets are inserted into the plurality of holes of the rotor. The permanent magnets are each formed or arranged as a convex “V” and “U” with respect to the shaft of the rotor.
    Type: Application
    Filed: July 24, 2002
    Publication date: March 27, 2003
    Inventors: Haruo Koharagi, Masaharu Senoh, Keiji Noma, Kohei Ishii, Kazuo Sato, Satoshi Kikuchi, Miyoshi Takahashi, Kouki Yamamoto, Tadashi Fukushima
  • Patent number: 6525442
    Abstract: A permanent magnet rotating electric machine that comprises a stator, into which concentratively wound armature windings are inserted in such a way as to surround a plurality of teeth formed in a stator core, and a rotor having permanent magnets accommodated into a plurality of permanent magnet inserting holes formed in a rotor core. In this rotating electric machine, the permanent magnets are convex V-shaped or U-shaped with respect to a rotor axis. Moreover, nearly V-shaped recess portions, each of which is placed between adjacent poles, are formed in outer circumferential surface portions of the rotor core. Thus, torque caused by magnetic flux due to the magnets is increased, while armature reaction magnetic flux generated by an armature current is reduced. Consequently, q-axis inductance is reduced, so that armature current commutation is quickly achieved.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: February 25, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Haruo Koharagi, Masaharu Senoh, Keiji Noma, Kohei Ishii, Kazuo Sato, Satoshi Kikuchi, Miyoshi Takahashi, Kouki Yamamoto
  • Patent number: 6441525
    Abstract: The present invention provides a permanent magnet rotating electric machine that comprises a stator, into which concentrated wound armature windings are inserted in such a way as to surround a plurality of teeth formed in a stator core, and a rotor having rare earth permanent magnets inserted into a plurality of permanent magnet holes, which are formed in a rotor core and used for accommodating permanent magnets. In this permanent magnet rotating electric machine, the permanent magnets are each shaped like a convex “V” or “U” with respect to the shaft of the rotor. Moreover, a ratio of the width W1 of an interpole core between the permanent magnets to the width Xg of the gap between the stator core and the rotor core is set in such a manner as to satisfy the following condition: 0.8≦W1/Xg≦13.2. Thus, even when this rotating electric machine is driven by a position sensorless inverter in the case of 120 degree energization, the system efficiency is enhanced.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: August 27, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Haruo Koharagi, Masaharu Senoh, Keiji Noma, Kohei Ishii, Kazuo Sato, Satoshi Kikuchi, Miyoshi Takahashi, Kouki Yamamoto, Tadashi Fukushima