Patents by Inventor Kohei SHIMA

Kohei SHIMA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11924937
    Abstract: A light-emitting device includes an optical member including first and second light emitting elements, first and second light condenser portions, and a light guide portion. The first light condenser portion is disposed at a position corresponding to the first light-emitting element, and condenses a portion of light emitted from the first light-emitting element. The second light condenser portion surrounds the first light condenser portion, and condenses a portion of the light that is not incident to the first light condenser portion among the light emitted from the first light-emitting element. The light guide portion is disposed at a periphery of the second light condenser portion and at a position corresponding to the second light-emitting element, and guides light emitted from the second light-emitting element by causing total reflection in an interior of the light guide portion.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: March 5, 2024
    Assignee: NICHIA CORPORATION
    Inventors: Kohei Shima, Yohei Kawano, Akira Asano
  • Publication number: 20230392280
    Abstract: An object of the present invention is to provide a GaN crystal long in light emission lifetime by time-resolved photoluminescence measurement and provide high-quality GaN crystal and GaN substrate that have few specified crystal defects affecting the light emission lifetime. A gallium nitride crystal having a light emission lifetime by time-resolved photoluminescence measurement, of 5 ps or more and 200 ps or less, and satisfying at least one of the following requirement (i) and requirement (ii): (i) an FWHM in a 004 diffraction X-ray rocking curve is 50 arcsec or less at least one position of the crystal; and (ii) a dislocation density is 5×106 cm?2 or less.
    Type: Application
    Filed: August 24, 2023
    Publication date: December 7, 2023
    Applicants: MITSUBISHI CHEMICAL CORPORATION, THE JAPAN STEEL WORKS, LTD., TOHOKU UNIVERSITY
    Inventors: Yutaka MIKAWA, Hirotaka IKEDA, Quanxi BAO, Kouhei KURIMOTO, Kohei SHIMA, Kazunobu KOJIMA, Toru ISHIGURO, Shigefusa CHICHIBU
  • Patent number: 11229893
    Abstract: Provided is a method of producing a silicon compound material, including the steps of: storing a silicon carbide preform in a reaction furnace; supplying a raw material gas containing methyltrichlorosilane to the reaction furnace to infiltrate the preform with silicon carbide; and controlling and reducing a temperature of a gas discharged from the reaction furnace at a predetermined rate to subject the gas to continuous thermal history, to thereby decrease generation of a liquid or solid by-product derived from the gas.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: January 25, 2022
    Assignees: IHI Corporation, The University of Tokyo
    Inventors: Yasuyuki Fukushima, Kozue Akazaki, Yasutomo Tanaka, Kazuma Akikubo, Takeshi Nakamura, Yukihiro Shimogaki, Takeshi Momose, Noboru Sato, Kohei Shima, Yuichi Funato
  • Publication number: 20210278060
    Abstract: A light-emitting device includes an optical member including first and second light emitting elements, first and second light condenser portions, and a light guide portion. The first light condenser portion is disposed at a position corresponding to the first light-emitting element, and condenses a portion of light emitted from the first light-emitting element. The second light condenser portion surrounds the first light condenser portion, and condenses a portion of the light that is not incident to the first light condenser portion among the light emitted from the first light-emitting element. The light guide portion is disposed at a periphery of the second light condenser portion and at a position corresponding to the second light-emitting element, and guides light emitted from the second light-emitting element by causing total reflection in an interior of the light guide portion.
    Type: Application
    Filed: May 21, 2021
    Publication date: September 9, 2021
    Applicant: NICHIA CORPORATION
    Inventors: Kohei SHIMA, Yohei KAWANO, Akira ASANO
  • Patent number: 11047549
    Abstract: A light-emitting device includes an optical member including first and second light emitting elements, first and second light condenser portions, and a light guide portion. The first light condenser portion is disposed at a position corresponding to the first light-emitting element, and condenses a portion of light emitted from the first light-emitting element. The second light condenser portion surrounds the first light condenser portion, and condenses a portion of the light that is not incident to the first light condenser portion among the light emitted from the first light-emitting element. The light guide portion is disposed at a periphery of the second light condenser portion and at a position corresponding to the second light-emitting element, and guides light emitted from the second light-emitting element by causing total reflection in an interior of the light guide portion.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: June 29, 2021
    Assignee: NICHIA CORPORATION
    Inventors: Kohei Shima, Yohei Kawano, Akira Asano
  • Patent number: 10982835
    Abstract: A light-emitting device includes a concentrator, a first tubular body surrounding the concentrator, one or more first light-emitting elements disposed at a position corresponding to the concentrator, and a plurality of second light-emitting elements. The first tubular body is transparent. The first tubular body has a plurality of recesses formed in an end portion of the first tubular body. Portions of the first tubular body between the recesses form light guide portions. The plurality of second light-emitting elements are disposed at positions corresponding to a plurality of the light guide portions.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: April 20, 2021
    Assignee: NICHIA CORPORATION
    Inventors: Kohei Shima, Yohei Kawano
  • Publication number: 20200332981
    Abstract: A light-emitting device includes a concentrator, a first tubular body surrounding the concentrator, one or more first light-emitting elements disposed at a position corresponding to the concentrator, and a plurality of second light-emitting elements. The first tubular body is transparent. The first tubular body has a plurality of recesses formed in an end portion of the first tubular body. Portions of the first tubular body between the recesses form light guide portions. The plurality of second light-emitting elements are disposed at positions corresponding to a plurality of the light guide portions.
    Type: Application
    Filed: April 17, 2020
    Publication date: October 22, 2020
    Applicant: NICHIA CORPORATION
    Inventors: Kohei SHIMA, Yohei KAWANO
  • Publication number: 20200132259
    Abstract: A light-emitting device includes an optical member including first and second light emitting elements, first and second light condenser portions, and a light guide portion. The first light condenser portion is disposed at a position corresponding to the first light-emitting element, and condenses a portion of light emitted from the first light-emitting element. The second light condenser portion surrounds the first light condenser portion, and condenses a portion of the light that is not incident to the first light condenser portion among the light emitted from the first light-emitting element. The light guide portion is disposed at a periphery of the second light condenser portion and at a position corresponding to the second light-emitting element, and guides light emitted from the second light-emitting element by causing total reflection in an interior of the light guide portion.
    Type: Application
    Filed: October 30, 2019
    Publication date: April 30, 2020
    Applicant: NICHIA CORPORATION
    Inventors: Kohei SHIMA, Yohei KAWANO, Akira ASANO
  • Publication number: 20190135640
    Abstract: Provided is a method of producing a silicon compound material, including the steps of: storing a silicon carbide preform in a reaction furnace; supplying a raw material gas containing methyltrichlorosilane to the reaction furnace to infiltrate the preform with silicon carbide; and controlling and reducing a temperature of a gas discharged from the reaction furnace at a predetermined rate to subject the gas to continuous thermal history, to thereby decrease generation of a liquid or solid by-product derived from the gas.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 9, 2019
    Applicants: IHI Corporation, The University of Tokyo
    Inventors: Yasuyuki FUKUSHIMA, Kozue AKAZAKI, Yasutomo TANAKA, Kazuma AKIKUBO, Takeshi NAKAMURA, Yukihiro SHIMOGAKI, Takeshi MOMOSE, Noboru SATO, Kohei SHIMA, Yuichi FUNATO
  • Patent number: 10221104
    Abstract: A mixed gas containing a precursor gas, an additive gas and a carrier gas is supplied to a preform stored in an electric furnace, and silicon carbide is deposited by chemical vapor deposition or chemical vapor phase impregnation to form a film. The preform includes multiple fiber bundles, and the fiber bundles include multiple fibers. This heat-resistant composite material includes a ceramic fiber preform impregnated with silicon carbide, and producing the composite material involves a step in which silicon carbide is deposited between the fibers to integrate the fibers which configure the fiber bundles, and a step in which silicon carbide is deposited between the fiber bundles to integrate the fiber bundles. Hereby, uniformity of embedding and growth rate of the silicon carbide film are both attained.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: March 5, 2019
    Assignees: IHI CORPORATION, THE UNIVERSITY OF TOKYO
    Inventors: Takeshi Nakamura, Masato Ishizaki, Kozue Hotozuka, Yasuyuki Fukushima, Yukihiro Shimogaki, Takeshi Momose, Hidetoshi Sugiura, Kohei Shima, Yuichi Funato
  • Patent number: 10167549
    Abstract: In the present embodiment, in the production of a heat-resistant composite material resulting from impregnating a ceramic fiber preform with silicon carbide, a mixed gas containing starting material gas, an additive gas, and a carrier gas is supplied to a substrate having a minute structure such as a preform stored in an electric furnace, silicon carbide is deposited to form a film by means of a chemical vapor deposition method or a chemical vapor infiltration method, and the film formation growth speed and embedding uniformity are controlled by means of the amount of additive gas added to the starting material gas, the starting material gas contains tetramethylsilane, and the additive gas contains a molecule containing chlorine such as methyl chloride or hydrogen chloride. The film formation growth speed and embedding uniformity of the silicon carbide are both achieved.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: January 1, 2019
    Assignees: IHI CORPORATION, THE UNIVERSITY OF TOKYO
    Inventors: Takeshi Nakamura, Kozue Hotozuka, Yasuyuki Fukushima, Yukihiro Shimogaki, Takeshi Momose, Hidetoshi Sugiura, Kohei Shima, Yuichi Funato
  • Publication number: 20160305015
    Abstract: In the present embodiment, in the production of a heat-resistant composite material resulting from impregnating a ceramic fiber preform with silicon carbide, a mixed gas containing starting material gas, an additive gas, and a carrier gas is supplied to a substrate having a minute structure such as a preform stored in an electric furnace, silicon carbide is deposited to form a film by means of a chemical vapor deposition method or a chemical vapor infiltration method, and the film formation growth speed and embedding uniformity are controlled by means of the amount of additive gas added to the starting material gas, the starting material gas contains tetramethylsilane, and the additive gas contains a molecule containing chlorine such as methyl chloride or hydrogen chloride. The film formation growth speed and embedding uniformity of the silicon carbide are both achieved.
    Type: Application
    Filed: June 28, 2016
    Publication date: October 20, 2016
    Applicants: IHI Corporation, The University of Tokyo
    Inventors: Takeshi NAKAMURA, Kozue HOTOZUKA, Yasuyuki FUKUSHIMA, Yukihiro SHIMOGAKI, Takeshi MOMOSE, Hidetoshi SUGIURA, Kohei SHIMA, Yuichi FUNATO
  • Publication number: 20160297716
    Abstract: A mixed gas containing a precursor gas, an additive gas and a carrier gas is supplied to a preform stored in an electric furnace, and silicon carbide is deposited by chemical vapor deposition or chemical vapor phase impregnation to form a film. The preform includes multiple fiber bundles, and the fiber bundles include multiple fibers. This heat-resistant composite material includes a ceramic fiber preform impregnated with silicon carbide, and producing the composite material involves a step in which silicon carbide is deposited between the fibers to integrate the fibers which configure the fiber bundles, and a step in which silicon carbide is deposited between the fiber bundles to integrate the fiber bundles. Hereby, uniformity of embedding and growth rate of the silicon carbide film are both attained.
    Type: Application
    Filed: May 26, 2016
    Publication date: October 13, 2016
    Applicants: IHI Corporation, The University of Tokyo
    Inventors: Takeshi NAKAMURA, Masato ISHIZAKI, Kozue HOTOZUKA, Yasuyuki FUKUSHIMA, Yukihiro SHIMOGAKI, Takeshi MOMOSE, Hidetoshi SUGIURA, Kohei SHIMA, Yuichi FUNATO