Patents by Inventor Kohei Shimoda

Kohei Shimoda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240087911
    Abstract: The present invention addresses the issue of providing a method for removing a transition metal oxide adhered to a transition metal film in a process for manufacturing a semiconductor element, and of providing a treatment liquid. Specifically, the present invention provides a method for treating a semiconductor of a transition metal, the method including, in a semiconductor formation process, a step of removing a transition metal oxide and a step of removing the transition metal. The present invention also provides a reducing agent-containing treatment liquid for a transition metal oxide, wherein the concentration of the reducing agent contained in the reducing agent-containing treatment liquid is 0.01 mass % or more and 50 mass % or less.
    Type: Application
    Filed: December 13, 2021
    Publication date: March 14, 2024
    Applicant: TOKUYAMA CORPORATION
    Inventors: Kohei SAITO, Tomoaki SATO, Yuki KIKKAWA, Takafumi SHIMODA, Takayuki NEGISHI
  • Patent number: 8507104
    Abstract: The present invention provides a metal coating formed by baking after applying a metal-nanoparticles-dispersed liquid onto a surface of a base material, the metal-nanoparticles-dispersed liquid being composed of metal nanoparticles, water, and a dispersant having a molecular weight of 2000-30000 and having a solid form at room temperature, wherein the metal coating comprises an alloy including (1) Ag and (2) at least one kind of metal selected from the group consisting of Au, Pt, Pd, Ru, Ir, Sn, Cu, Ni, Fe, Co, Ti and In, the content ratio of Ag being 80-99.9% by atomic percent in the total quantity of the alloy, and wherein the metal coating has an average grain size of 0.2-5 ?m. The metal coating has small surface roughness, and superior smoothness and denseness, and has excellent properties for etching and adhesion to a base material. Also, the invention provides a method of forming such metal coating as well as a metal wiring formed by pattern formation of the metal coating.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: August 13, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Issei Okada, Kohei Shimoda
  • Patent number: 8026185
    Abstract: An object of the present invention is to provide a method for manufacturing an electronic circuit component such as an organic TFT 1, which can manufacture an electronic circuit component excellent in reliability and having quality on a practical level, because an insulating layer and a conductive layer which have more excellent characteristics can be formed, particularly, on a general-purpose plastic substrate or the like by treatment at a process temperature of 200° C. or lower which has no influence on the above-mentioned plastic substrate. The method for manufacturing an electronic circuit component according to the invention includes heating a layer containing at least one of a polyimide and a precursor thereof at a temperature of 200° C.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: September 27, 2011
    Assignees: Sumitomo Electric Industries, Ltd., Nissan Chemical Industries, Ltd.
    Inventors: Shinichi Maeda, Go Ono, Issei Okada, Kohei Shimoda
  • Patent number: 8007690
    Abstract: A conductive paste mainly composed of a metal powder, a glass frit, and an organic vehicle. The total content amount of the metal powder and glass frit with respect to the entire conductive paste is 85 wt % or more. The viscosity at a rotational speed of 1 rpm measured at 25° C. with an E type rotating viscometer is 100 Pa·s or more and 400 Pa·s or less.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: August 30, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masahiro Yamakawa, Kohei Shimoda
  • Patent number: 7915190
    Abstract: The present invention relates to a metal catalyst containing fine metal particles, characterized in that the fine metal particles have a particle diameter of 3 nm or less and also have a proportion of metallic bond state of 40% or more, which is ascribed by subjecting to waveform separation of a binding energy peak peculiar to the metal as measured by using an X-ray photoelectron spectrometer. The fine metal particles are preferably fine platinum particles. The fine metal particles are preferably supported on the surface of carrier particles by reducing ions of metal to be deposited through the action of a reducing agent in a reaction system of a liquid phase containing the carrier particles dispersed therein, thereby to deposit the metal on the surface of carrier particles in the form of fine particles. The proportion of metallic bond state of the fine metal particles is adjusted within the above range by reducing after deposition thereby to decrease the oxidation state.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: March 29, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masatoshi Majima, Kohei Shimoda, Kouji Yamaguchi
  • Patent number: 7803734
    Abstract: The present invention relates to a metal catalyst containing fine metal particles, characterized in that the fine metal particles have a particle diameter of 3 nm or less and also have a proportion of metallic bond state of 40% or more, which is ascribed by subjecting to waveform separation of a binding energy peak peculiar to the metal as measured by using an X-ray photoelectron spectrometer. The fine metal particles are preferably fine platinum particles. The fine metal particles are preferably supported on the surface of carrier particles by reducing ions of metal to be deposited through the action of a reducing agent in a reaction system of a liquid phase containing the carrier particles dispersed therein, thereby to deposit the metal on the surface of carrier particles in the form of fine particles. The proportion of metallic bond state of the fine metal particles is adjusted within the above range by reducing after deposition thereby to decrease the oxidation state.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: September 28, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masatoshi Majima, Kohei Shimoda, Kouji Yamaguchi
  • Publication number: 20100184586
    Abstract: The present invention relates to a metal catalyst containing fine metal particles, characterized in that the fine metal particles have a particle diameter of 3 nm or less and also have a proportion of metallic bond state of 40% or more, which is ascribed by subjecting to waveform separation of a binding energy peak peculiar to the metal as measured by using an X-ray photoelectron spectrometer. The fine metal particles are preferably fine platinum particles. The fine metal particles are preferably supported on the surface of carrier particles by reducing ions of metal to be deposited through the action of a reducing agent in a reaction system of a liquid phase containing the carrier particles dispersed therein, thereby to deposit the metal on the surface of carrier particles in the form of fine particles. The proportion of metallic bond state of the fine metal particles is adjusted within the above range by reducing after deposition thereby to decrease the oxidation state.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 22, 2010
    Inventors: Masatoshi MAJIMA, Kohei Shimoda, Kouji Yamaguchi
  • Patent number: 7691175
    Abstract: When fine metal particles of a nanometer size are handled in a state of colloidal particles, it is difficult to handle them and the range of the selection of the solvent to be used is limited. The invention offers a granular metal powder that is produced by the steps of (a) preparing a suspension liquid comprising (a1) water, an organic solvent, or a mixture thereof, (a2) metal particles having an average particle diameter of at least 1 nm and at most 100 nm, and (a3) an organic compound capable of being adsorbed on the surface of the metal particles and (b) removing the water, organic solvent, or mixture thereof by drying the suspension liquid and that has an apparent density of at least 1.0 g/ml and at most 5.0 g/ml. The granular metal powder can be handled as a dry metal powder and is readily redispersed in a solvent.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: April 6, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kohei Shimoda, Issei Okada, Masatoshi Majima
  • Publication number: 20100003791
    Abstract: An object of the present invention is to provide a method for manufacturing an electronic circuit component such as an organic TFT 1, which can manufacture an electronic circuit component excellent in reliability and having quality on a practical level, because an insulating layer and a conductive layer which have more excellent characteristics can be formed, particularly, on a general-purpose plastic substrate or the like by treatment at a process temperature of 200° C. or lower which has no influence on the above-mentioned plastic substrate. The method for manufacturing an electronic circuit component according to the invention includes heating a layer containing at least one of a polyimide and a precursor thereof at a temperature of 200° C.
    Type: Application
    Filed: August 3, 2007
    Publication date: January 7, 2010
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Shinichi Maeda, Go Ono, Issei Okada, Kohei Shimoda
  • Patent number: 7608203
    Abstract: A metallic colloidal solution (a) includes a water-based dispersion medium that is easy in handling with regard to safety and environment and metallic particles having a uniform particle diameter and being excellent in properties such as conductivity and (b) has properties suitable for various printing methods and ink-applying methods. In addition, an inkjet-use metallic ink incorporating the metallic colloidal solution has properties suitable for the inkjet printing method. The metallic particles are deposited by reducing metallic ions in water and have a primary-particle diameter of at most 200 nm. The dispersion medium is made of a mixed solvent of water and a water-soluble organic solvent. The metallic particles are dispersed in the dispersion medium under the presence of a dispersant having a molecular weight of 200 to 30,000.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: October 27, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Issei Okada, Kohei Shimoda
  • Publication number: 20090197045
    Abstract: The present invention provides a metal coating formed by baking after applying a metal-nanoparticles-dispersed liquid onto a surface of a base material, the metal-nanoparticles-dispersed liquid being composed of metal nanoparticles, water, and a dispersant having a molecular weight of 2000-30000 and having a solid form at room temperature, wherein the metal coating comprises an alloy including (1) Ag and (2) at least one kind of metal selected from the group consisting of Au, Pt, Pd, Ru, Ir, Sn, Cu, Ni, Fe, Co, Ti and In, the content ratio of Ag being 80-99.9% by atomic percent in the total quantity of the alloy, and wherein the metal coating has an average grain size of 0.2-5 ?m. The metal coating has small surface roughness, and superior smoothness and denseness, and has excellent properties for etching and adhesion to a base material. Also, the invention provides a method of forming such metal coating as well as a metal wiring formed by pattern formation of the metal coating.
    Type: Application
    Filed: May 17, 2006
    Publication date: August 6, 2009
    Inventors: Issei Okada, Kohei Shimoda
  • Patent number: 7556747
    Abstract: Provided is a conductive paste which can have high conductivity even if the sintering temperature is 500° C. or less, and which does not cause an interference pattern or crack on a substrate even if a thick film thereof is formed on the substrate. The conductive paste comprises main components including a metal powder, a glass frit, and an organic vehicle. The metal powder is composed of spherical particles (A) having an average primary-particle diameter of 0.1 to 1 ?m and spherical particles (B) having an average primary-particle diameter of 50 nm or less, and the content of spherical particles (A) ranges from 50 to 99 wt % and the content of spherical particles (B) ranges from 1 to 50 wt %. The content of the glass frit ranges from 0.1 wt % to 15 wt % to the total amount of the glass frit and the metal powder. Preferably, the glass frit does not contain lead and has a working point of 500° C. or less, and the average particle diameter thereof is 2 ?m or less.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: July 7, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masahiro Yamakawa, Kohei Shimoda
  • Publication number: 20090107707
    Abstract: A conductive paste is mainly composed of a metal powder, a glass frit, and an organic vehicle. The total content amount of the metal powder and glass frit with respect to the entire conductive paste is 85 wt % or more. The viscosity at a rotational speed of 1 rpm measured at 25° C. with an E type rotating viscometer is 100 Pa·s or more and 400 Pa·s or less.
    Type: Application
    Filed: May 22, 2006
    Publication date: April 30, 2009
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masahiro Yamakawa, Kohei Shimoda
  • Patent number: 7510592
    Abstract: A method of producing metal powder by reducing ions of a metal for precipitation by performance of a reducing agent in a liquid-phase reaction system, wherein the metal is precipitated as metal powder particles by being reduced under conditions in which the exchange-current density of an oxidation-reduction reaction between the metal ions and the reducing agent is 100 ?A/cm2 or less, the exchange-current density being determined by the mixed potential theory.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: March 31, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masatoshi Majima, Kohei Shimoda, Issei Okada, Masahiro Yamakawa, Takashi Kasuga
  • Publication number: 20080308001
    Abstract: A metallic colloidal solution (a) includes a water-based dispersion medium that is easy in handling with regard to safety and environment and metallic particles having a uniform particle diameter and being excellent in properties such as conductivity and (b) has properties suitable for various printing methods and ink-applying methods. In addition, an inkjet-use metallic ink incorporating the metallic colloidal solution has properties suitable for the inkjet printing method. The metallic particles are deposited by reducing metallic ions in water and have a primary-particle diameter of at most 200 nm. The dispersion medium is made of a mixed solvent of water and a water-soluble organic solvent. The metallic particles are dispersed in the dispersion medium under the presence of a dispersant having a molecular weight of 200 to 30,000.
    Type: Application
    Filed: August 21, 2008
    Publication date: December 18, 2008
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Issei OKADA, Kohei SHIMODA
  • Patent number: 7445731
    Abstract: A metallic colloidal solution (a) includes a water-based dispersion medium that is easy in handling with regard to safety and environment and metallic particles having a uniform particle diameter and being excellent in properties such as conductivity and (b) has properties suitable for various printing methods and ink-applying methods. In addition, an inkjet-use metallic ink incorporating the metallic colloidal solution has properties suitable for the inkjet printing method. The metallic particles are deposited by reducing metallic ions in water and have a primary-particle diameter of at most 200 nm. The dispersion medium is made of a mixed solvent of water and a water-soluble organic solvent. The metallic particles are dispersed in the dispersion medium under the presence of a dispersant having a molecular weight of 200 to 30,000.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: November 4, 2008
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Issei Okada, Kohei Shimoda
  • Patent number: 7285152
    Abstract: A method of manufacturing the chain-structure metal powder comprises precipitating a metal powder by a reaction performed in an aqueous solution in which nickel ions, complex ions, and titanium ions containing trivalent titanium ions (Ti3+) and tetravalent titanium ions (Ti4+) are present.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: October 23, 2007
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kohei Shimoda, Masatoshi Majima, Keiji Koyama, Issei Okada, Tetsuya Kuwabara
  • Publication number: 20070244003
    Abstract: The present invention relates to a metal catalyst containing fine metal particles, characterized in that the fine metal particles have a particle diameter of 3 nm or less and also have a proportion of metallic bond state of 40% or more, which is ascribed by subjecting to waveform separation of a binding energy peak peculiar to the metal as measured by using an X-ray photoelectron spectrometer. The fine metal particles are preferably fine platinum particles. The fine metal particles are preferably supported on the surface of carrier particles by reducing ions of metal to be deposited through the action of a reducing agent in a reaction system of a liquid phase containing the carrier particles dispersed therein, thereby to deposit the metal on the surface of carrier particles in the form of fine particles. The proportion of metallic bond state of the fine metal particles is adjusted within the above range by reducing after deposition thereby to decrease the oxidation state.
    Type: Application
    Filed: May 20, 2005
    Publication date: October 18, 2007
    Inventors: Masatoshi Majima, Kohei Shimoda, Kouji Yamaguchi
  • Publication number: 20070089565
    Abstract: A method of producing metal powder by reducing ions of a metal for precipitation by performance of a reducing agent in a liquid-phase reaction system, wherein the metal is precipitated as metal powder particles by being reduced under conditions in which the exchange-current density of an oxidation-reduction reaction between the metal ions and the reducing agent is 100 ?A/cm2 or less, the exchange-current density being determined by the mixed potential theory.
    Type: Application
    Filed: December 8, 2004
    Publication date: April 26, 2007
    Inventors: Masatoshi Majima, Kohei Shimoda, Issei Okada, Masahiro Yamakawa, Takashi Kasuga
  • Publication number: 20070074598
    Abstract: When fine metal particles of a nano meter size are handled in a state of colloidal particles, it is difficult to handle them and the range of the selection of the solvent to be used is limited. The invention offers a granular metal powder that is produced by the steps of (a) preparing a suspension liquid comprising (a1) water, an organic solvent, or a mixture thereof, (a2) metal particles having an average particle diameter of at least 1 nm and at most 100 nm, and (a3) an organic compound capable of being adsorbed on the surface of the metal particles and (b) removing the water, organic solvent, or mixture thereof by drying the suspension liquid and that has an apparent density of at least 1.0 g/ml and at most 5.0 g/ml. The granular metal powder can be handled as a dry metal powder and is readily redispersed in a solvent.
    Type: Application
    Filed: June 24, 2004
    Publication date: April 5, 2007
    Inventors: Kohei Shimoda, Issei Okada, Masatoshi Majima