Patents by Inventor Kohei TAKASAKI

Kohei TAKASAKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11918986
    Abstract: There is provided an exhaust gas purification device that shows a high HC removal performance under a condition in which a rich air-fuel mixture is introduced. The exhaust gas purification device includes a substrate, a first catalyst layer, and a second catalyst layer. The substrate includes an upstream end and a downstream end. The first catalyst layer is disposed on a surface of the partition wall in an upstream region including the upstream end of the substrate. The second catalyst layer is disposed inside the partition wall in a downstream region including the downstream end of the substrate. The first catalyst layer contains a first metal catalyst and alumina-zirconia composite oxide. The second catalyst layer contains a second metal catalyst.
    Type: Grant
    Filed: May 24, 2022
    Date of Patent: March 5, 2024
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji Sugiura, Takeshi Hirabayashi, Akemi Satou, Keisuke Murawaki, Takaya Ota, Masatoshi Ikebe, Kohei Takasaki, Takeshi Morishima
  • Patent number: 11883797
    Abstract: An exhaust gas purification catalyst device having a substrate, a first catalyst coating layer on the substrate, and a second catalyst coating layer on the first catalyst coating layer. The first catalyst coating layer includes inorganic oxide particles, palladium carried on the inorganic oxide particles, and a barium compound. The second catalyst coating layer includes alumina particles and rhodium carried by the alumina particles. The ratio (MBa/MRh) between the mass (MBa) of barium in the first catalyst coating layer and the mass (MRh) of rhodium in the second catalyst coating layer is 5.0-60.0 inclusive.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: January 30, 2024
    Assignee: CATALER CORPORATION
    Inventors: Tatsuya Ohashi, Kohei Takasaki
  • Publication number: 20230302434
    Abstract: Provided is an exhaust gas purification catalyst that includes a base material containing a silicon-silicon carbide composite material and a catalyst layer containing a barium component and that has excellent high-temperature durability of oxygen storage capacity. The exhaust gas purification catalyst disclosed here includes a base material and a catalyst layer in contact with the base material. The base material contains a silicon-silicon carbide composite material. The catalyst layer contains a platinum-group catalyst, a barium component, and an oxygen storage material. The barium component is one material selected from the group consisting of barium and a barium compound. The barium component is present on at least a surface of the oxygen storage material. The barium component has an average particle size of 100 nm or more and 350 nm or less.
    Type: Application
    Filed: July 19, 2021
    Publication date: September 28, 2023
    Inventors: Tatsuya Ohashi, Kohei Takasaki, Yu Onohara, Keiichi Narita
  • Publication number: 20230302438
    Abstract: According to a technique disclosed herein, provided is an exhaust gas purification catalyst, which both suppresses OSC when using a new vehicle and maintains OSC during life cycles. The exhaust gas purification catalyst disclosed herein is an exhaust gas purification catalyst includes a substrate, and a catalyst coated layer formed on the surface of the substrate, wherein the catalyst coated layer contains an OSC material having an oxygen storage capacity. The catalyst coated layer includes a Rh layer mainly containing Rh as a catalyst metal, and a Pd/Pt layer mainly containing Pd and/or Pt as a catalyst metal. At least a portion of the Pd/Pt layer in the catalyst coated layer contains, as the OSC material, a low specific surface area OSC material, including a ceria-zirconia composite oxide and having a specific surface area of 40 m2/g or more and 60 m2/g or less.
    Type: Application
    Filed: June 4, 2021
    Publication date: September 28, 2023
    Inventors: Ryota Onoe, Takahiro Noguchi, Tatsuya Ohashi, Kohei Takasaki
  • Publication number: 20230294044
    Abstract: Provided is an exhaust gas purification catalyst system comprising, in the following order, from the upstream side of an exhaust gas flow: a first exhaust gas purification catalyst apparatus 100 including a metal honeycomb substrate 110 and a first catalyst coat layer 120 on the metal honeycomb substrate 110; a heater 300; and a second exhaust purification catalyst apparatus 200 including a cordierite honeycomb substrate 210 and a second catalyst coat layer 220 on the cordierite honeycomb substrate 210, wherein the first catalyst coat layer 120 contains an adsorbent 130 that can adsorb one or two or more among NOx, HC and CO, and the second catalyst coat layer 220 contains inorganic oxide particles 230 and catalyst precious metal particles 240 supported on the inorganic oxide particles 230.
    Type: Application
    Filed: July 6, 2021
    Publication date: September 21, 2023
    Applicant: CATALER CORPORATION
    Inventors: Kohei TAKASAKI, Tatsuya OHASHI, Shunsuke OISHI, Ryota ONOE, Junichi HORI, Ryosuke TAKASU, Chihiro KASUYA
  • Patent number: 11679379
    Abstract: The exhaust gas purification device includes a substrate, a first catalyst layer, and a second catalyst layer. The substrate includes an upstream end, a downstream end, and a porous partition wall defining a plurality of cells extending between the upstream end and the downstream end. The plurality of cells include an inlet cell opening at the upstream end and sealed at the downstream end, and an outlet cell adjacent to the inlet cell sealed at the upstream end and opening at the downstream end. The first catalyst layer is disposed on a surface of the partition wall in an upstream region. In a downstream region, the second catalyst layer is disposed inside the partition wall, and a second catalyst-containing wall including the partition wall and the second catalyst layer has a porosity of 35% or more.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: June 20, 2023
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji Sugiura, Takeshi Hirabayashi, Akemi Satou, Keisuke Murawaki, Takaya Ota, Masatoshi Ikebe, Kohei Takasaki, Takeshi Morishima
  • Publication number: 20230114106
    Abstract: An exhaust gas purification catalyst device comprising a base material and a catalyst coating layer provided on the base material, wherein the catalyst coating layer contains zeolite particles, inorganic oxide particles other than the zeolite particles, and a catalyst precious metal, and the ratio dZEO/dOX between the average particle diameter dZEO of the zeolite particles and the average particle diameter dOX of the inorganic oxide particles other than the zeolite particles is 3.4 or less.
    Type: Application
    Filed: March 17, 2021
    Publication date: April 13, 2023
    Applicant: CATALER CORPORATION
    Inventors: Kohei TAKASAKI, Tatsuya OHASHI, Shunsuke OISHI
  • Publication number: 20230032414
    Abstract: The present invention provides an exhaust gas purification catalyst in which platinum group metal migration from a catalyst layer to a base material during high temperature duration is suppressed. The exhaust gas purification catalyst disclosed herein includes a base material, a catalyst layer, and an intermediate layer arranged between the base material and the catalyst layer. The base material contains SiC. The catalyst layer contains a platinum group metal as a catalyst component. The intermediate layer contains substantially no platinum group metal. A product of a thickness of the intermediate layer (?m) and a specific surface area (m2/g) of the intermediate layer is 1100 or more.
    Type: Application
    Filed: December 2, 2020
    Publication date: February 2, 2023
    Inventors: Kohei Takasaki, Tatsuya Ohashi, Keiichi Narita
  • Patent number: 11524284
    Abstract: An exhaust gas purification device has a metal substrate and a catalyst layer on the metal substrate, wherein the metal substrate is a wound body of one or a plurality of metal foils, at least one of the one or a plurality of metal foils is a perforated metal foil having holes, the catalyst layer contains noble metal catalyst particles and a carrier for carrying the noble metal catalyst particles, and more noble metal catalyst particles are present in the catalyst layer on side surfaces of holes, which face an upstream side of an exhaust gas flow, than in the catalyst layer on side surfaces of holes, which face a downstream side of the exhaust gas flow.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: December 13, 2022
    Assignee: CATALER CORPORATION
    Inventors: Kohei Takasaki, Yuji Matsuhisa, Nobuaki Bando, Hiroshi Ono, Tomohito Mizukami, Tsuyoshi Ito
  • Publication number: 20220387983
    Abstract: There is provided an exhaust gas purification device that shows a high HC removal performance under a condition in which a rich air-fuel mixture is introduced. The exhaust gas purification device includes a substrate, a first catalyst layer, and a second catalyst layer. The substrate includes an upstream end and a downstream end. The first catalyst layer is disposed on a surface of the partition wall in an upstream region including the upstream end of the substrate. The second catalyst layer is disposed inside the partition wall in a downstream region including the downstream end of the substrate. The first catalyst layer contains a first metal catalyst and alumina-zirconia composite oxide. The second catalyst layer contains a second metal catalyst.
    Type: Application
    Filed: May 24, 2022
    Publication date: December 8, 2022
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji SUGIURA, Takeshi HIRABAYASHI, Akemi SATOU, Keisuke MURAWAKI, Takaya OTA, Masatoshi IKEBE, Kohei TAKASAKI, Takeshi MORISHIMA
  • Publication number: 20220370997
    Abstract: The exhaust gas purification device includes a substrate, a first catalyst layer, and a second catalyst layer. The substrate includes an upstream end, a downstream end, and a porous partition wall defining a plurality of cells extending between the upstream end and the downstream end. The plurality of cells include an inlet cell opening at the upstream end and sealed at the downstream end, and an outlet cell adjacent to the inlet cell sealed at the upstream end and opening at the downstream end. The first catalyst layer is disposed on a surface of the partition wall in an upstream region. In a downstream region, the second catalyst layer is disposed inside the partition wall, and a second catalyst-containing wall including the partition wall and the second catalyst layer has a porosity of 35% or more.
    Type: Application
    Filed: May 2, 2022
    Publication date: November 24, 2022
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji SUGIURA, Takeshi HIRABAYASHI, Akemi SATOU, Keisuke MURAWAKI, Takaya OTA, Masatoshi IKEBE, Kohei TAKASAKI, Takeshi MORISHIMA
  • Publication number: 20220347626
    Abstract: An exhaust gas purification device suppresses a pressure loss increase and includes a honeycomb substrate and inflow cell side catalyst layer. The substrate includes a porous partition wall defining several cells extending from an inflow side end surface to an outflow side end surface. The cells include an inflow and outflow cell adjacent across the wall. The inflow cell has an open inflow side end and sealed outflow side end. The outflow cell has a sealed inflow side end and open outflow side end. The catalyst layer is on an inflow cell side surface in an region extending from the inflow side end positioned 10% or more of the partition wall length. At this position, a filled portion of the inflow cell side catalyst layer pores are 40% or less. The pores are present to a depth of 50% of a thickness of the partition wall.
    Type: Application
    Filed: April 11, 2022
    Publication date: November 3, 2022
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Akemi SATO, Takeshi HIRABAYASHI, Koji SUGIURA, Keisuke MURAWAKI, Takaya OTA, Masatoshi IKEBE, Kohei TAKASAKI, Takeshi MORISHIMA
  • Publication number: 20220176352
    Abstract: An exhaust gas purification catalyst device having a substrate, a first catalyst coating layer on the substrate, and a second catalyst coating layer on the first catalyst coating layer. The first catalyst coating layer includes inorganic oxide particles, palladium carried on the inorganic oxide particles, and a barium compound. The second catalyst coating layer includes alumina particles and rhodium carried by the alumina particles. The ratio (MBa/MRh) between the mass (MBa) of barium in the first catalyst coating layer and the mass (MRh) of rhodium in the second catalyst coating layer is 5.0-60.0 inclusive.
    Type: Application
    Filed: March 3, 2020
    Publication date: June 9, 2022
    Applicant: CATALER CORPORATION
    Inventors: Tatsuya OHASHI, Kohei TAKASAKI
  • Publication number: 20200346200
    Abstract: An exhaust gas purification device has a metal substrate and a catalyst layer on the metal substrate, wherein the metal substrate is a wound body of one or a plurality of metal foils, at least one of the one or a plurality of metal foils is a perforated metal foil having holes, the catalyst layer contains noble metal catalyst particles and a carrier for carrying the noble metal catalyst particles, and more noble metal catalyst particles are present in the catalyst layer on side surfaces of holes, which face an upstream side of an exhaust gas flow, than in the catalyst layer on side surfaces of holes, which face a downstream side of the exhaust gas flow.
    Type: Application
    Filed: September 14, 2018
    Publication date: November 5, 2020
    Applicant: CATALER CORPORATION
    Inventors: Kohei TAKASAKI, Yuji MATSUHISA, Nobuaki BANDO, Hiroshi ONO, Tomohito MIZUKAMI, Tsuyoshi ITO