Patents by Inventor Kohji Ohno
Kohji Ohno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20130251636Abstract: Intended is to provide an MRI contrast agent that tends not to be phagocytized by reticuloendothelial cells and that has improved dispersion stability. The present invention is an MRI contrast agent containing composite particles, wherein the composite particles are those with polymer graft chains bound to surfaces of microparticles at a very high density sufficient to allow steric repulsion to occur between the graft chains, the micoparticles are inorganic microparticles that exhibit superparamagnetism, and the polymer graft chains have a number average molecular weight (Mn) of at least 30,000. Preferably, the MRI contrast agent is for tumor diagnosis.Type: ApplicationFiled: September 29, 2011Publication date: September 26, 2013Applicants: KYOTO UNIVERSITY, KANEKA CORPORATIONInventors: Yoshiyuki Tago, Shinichi Yoshida, Kohji Ohno, Yoshinobu Tsujii, Yasuhiko Tabata
-
Publication number: 20120231346Abstract: The invention provides n electrochemical device containing a negative electrode having a negative electrode material layer at least on a surface; a positive electrode having a positive electrode material layer at least on a surface; and a solid polymer electrolyte of fine composite particles disposed between the negative electrode and the positive electrode. Each of the fine composite particles comprises a polymer brush layer of polymer graft chains. The fine composite particles form a substantially three-dimensional ordered array structure, and a continuous ion-conductive network channel is formed in each gap of the fine particles. The negative or positive electrode or electrode material layer have gaps filled with the fine composite particles.Type: ApplicationFiled: October 20, 2010Publication date: September 13, 2012Applicant: KYOTO UNIVERSITYInventors: Yoshinobu Tsujii, Kohji Ohno, Takeshi Fukuda, Takaya Sato, Takashi Morinaga
-
Patent number: 7964692Abstract: A polymer represented by Formula (7): wherein all variables are defined in the specification, including P1 which is a polymer chain obtained by polymerizing an addition-polymerizable monomer, which makes it possible to control the structure of the polymer as a molecular aggregate.Type: GrantFiled: January 7, 2009Date of Patent: June 21, 2011Assignee: JNC CorporationInventors: Mikio Yamahiro, Hisao Oikawa, Kenya Ito, Yasuhiro Yamamoto, Masami Tanaka, Nobumasa Ootake, Kenichi Watanabe, Kohji Ohno, Yoshinobu Tsujii, Takeshi Fukuda
-
Patent number: 7863396Abstract: The present invention provides a silicon compound represented by Formula (1) and a polymer obtained by using the same, and this makes it possible not only to obtain an organic-inorganic composite material having a distinct structure but also to control the structure of the above polymer as a molecular aggregate. wherein R1 is a group independently selected from hydrogen, alkyl having a carbon atom number of 1 to 40, substituted or non-substituted aryl and substituted or non-substituted arylalkyl; in this alkyl having a carbon atom number of 1 to 40, optional hydrogens may be substituted with fluorine, and optional —CH2— may be substituted with —O—, —CH?CH—, cycloalkylene or cycloalkenylene; in alkylene in this arylalkyl, optional hydrogens may be substituted with fluorine, and optional —CH2— may be substituted with —O— or —CH?CH—; and A1 is a group having an ?-haloester group.Type: GrantFiled: March 5, 2004Date of Patent: January 4, 2011Assignee: Chisso CorporationInventors: Mikio Yamahiro, Hisao Oikawa, Kenya Ito, Yasuhiro Yamamoto, Masami Tanaka, Nobumasa Ootake, Kenichi Watanabe, Kohji Ohno, Yoshinobu Tsujii, Takeshi Fukuda
-
Patent number: 7662985Abstract: A production process for a silicon compound represented by Formula (6), characterized by reacting a compound represented by Formula (4) with a compound represented by Formula (5): wherein all of the variables are defined in the specification.Type: GrantFiled: January 7, 2009Date of Patent: February 16, 2010Assignee: Chisso CorporationInventors: Mikio Yamahiro, Hisao Oikawa, Kenya Ito, Yasuhiro Yamamoto, Masami Tanaka, Nobumasa Ootake, Kenichi Watanabe, Kohji Ohno, Yoshinobu Tsujii, Takeshi Fukuda
-
Publication number: 20090143606Abstract: The present invention provides a silicon compound represented by Formula (1) and a polymer obtained by using the same, and this makes it possible not only to obtain an organic-inorganic composite material having a distinct structure but also to control the structure of the above polymer as a molecular aggregate. wherein R1 is a group independently selected from hydrogen, alkyl having a carbon atom number of 1 to 40, substituted or non-substituted aryl and substituted or non-substituted arylalkyl; in this alkyl having a carbon atom number of 1 to 40, optional hydrogens may be substituted with fluorine, and optional —CH2— may be substituted with —O—, —CH?CH—, cycloalkylene or cycloalkenylene; in alkylene in this arylalkyl, optional hydrogens may be substituted with fluorine, and optional —CH2— may be substituted with —O— or —CH?CH—; and A1 is a group having an ?-haloester bond.Type: ApplicationFiled: January 7, 2009Publication date: June 4, 2009Inventors: Mikio Yamahiro, Hisao Oikawa, Kenya Ito, Yasuhiro Yamamoto, Masami Tanaka, Nobumasa Ootake, Kenichi Watanabe, Kohji Ohno, Yoshinobu Tsujii, Takeshi Fukuda
-
Publication number: 20090137765Abstract: The present invention provides a silicon compound represented by Formula (1) and a polymer obtained by using the same, and this makes it possible not only to obtain an organic-inorganic composite material having a distinct structure but also to control the structure of the above polymer as a molecular aggregate. wherein R1 is a group independently selected from hydrogen, alkyl having a carbon atom number of 1 to 40, substituted or non-substituted aryl and substituted or non-substituted arylalkyl; in this alkyl having a carbon atom number of 1 to 40, optional hydrogens may be substituted with fluorine, and optional —CH2— may be substituted with —O—, —CH?CH—, cycloalkylene or cycloalkenylene; in alkylene in this arylalkyl, optional hydrogens may be substituted with fluorine, and optional —CH2— may be substituted with —O— or —CH?CH—; and A1 is a group having an ?-haloester bond.Type: ApplicationFiled: January 7, 2009Publication date: May 28, 2009Inventors: Mikio Yamahiro, Hisao Oikawa, Kenya Ito, Yasuhiro Yamamoto, Masami Tanaka, Nobumasa Ootake, Kenichi Watanabe, Kohji Ohno, Yoshinobu Tsujii, Takeshi Fukuda
-
Patent number: 7399819Abstract: A large part of conventional organic-inorganic composite materials is obtained by mechanical blending silsesquioxanes with organic polymers, and therefore it has been very difficult to control the structure thereof as the molecular aggregate of the composite materials. An object of the present invention is to provide a novel silicon compound having a living radical polymerization-initiating ability for an addition-polymerizable monomer and a polymer obtained using the same to thereby solve the problem described above regarding the conventional organic-inorganic composite materials. The present inventors have found that a novel silsesquioxane derivative to which a group having an ability to initiate polymerization of a monomer is useful as means for solving the problem described above.Type: GrantFiled: September 17, 2003Date of Patent: July 15, 2008Assignee: Chisso CorporationInventors: Mikio Yamahiro, Hisao Oikawa, Kazuhiro Yoshida, Kenya Ito, Yasuhiro Yamamoto, Masami Tanaka, Nobumasa Ootake, Kenichi Watanabe, Kohji Ohno, Yoshinobu Tsujii, Takeshi Fukuda
-
Patent number: 7375170Abstract: Since the majority of conventional organic/inorganic composite materials are obtained by mechanical blending of a silsesquioxane and an organic polymer or other means, it was extremely difficult to control the structure of the composite as a molecular agglomerate. In order to solve such a problem, the invention is to provide a silicon compound represented by Formula (1). This novel silicon compound has a living radical polymerization initiating ability for addition polymerizable monomers of a wide range.Type: GrantFiled: December 27, 2005Date of Patent: May 20, 2008Assignees: Chisso Corporation, Chisso Petrochemical CorporationInventors: Hisao Oikawa, Mikio Yamahiro, Koji Ohguma, Nobumasa Ootake, Kenichi Watanabe, Kohji Ohno, Yoshinobu Tsujii, Takeshi Fukuda
-
Publication number: 20080057310Abstract: The object of the present invention is to provide a process for hollowing a composite microparticle made of high-density grafted chains attached to a microparticle surface without compromising characteristics of prior art, high-density polymer particles of having a narrow particle size distribution and an excellent dispersion stability and to provide, by such a process, a hollow microparticle comprising a high-density polymer brush layer and a hollow portion. The present inventions provides a process for hollowing a microparticle, by eluting only a microparticle from a composite microparticle made of high-density grafted chains attached to a microparticle surface and provides, by such a process, a hollow microparticle comprising a hollow portion and a high-density polymer brush layer enclosing the hollow portion.Type: ApplicationFiled: September 1, 2005Publication date: March 6, 2008Inventors: Kohji Ohno, Yoshinobu Tsujii, Takeshi Fukuda
-
Patent number: 7294732Abstract: A silicon compound represented by Formula (1). In Formula (1), R1 is a group independently selected respectively from the group consisting of a hydrogen atom, alkyl, substituted or non-substituted aryl and substituted or non-substituted arylalkyl, and A1 is an organic group substituted with a halogenated sulfonyl group and is preferably a group represented by Formula (2). In Formula (2), X is halogen; R2 is alkyl; a is an integer of 0 to 2; and Z1 is a single bond or alkylene having a carbon number of 1 to 10. The silicon compound provided by the present invention is a silsesquioxane derivative having an excellent living polymerizable radical polymerization initiating function. For example, it is possible to commence polymerization by allowing an acryl base monomer to coexist to form an acryl base polymer making use of one point of the structure of the silsesquioxane in the present invention as a starting point.Type: GrantFiled: August 7, 2003Date of Patent: November 13, 2007Assignee: Chisso CorporationInventors: Kohji Ohno, Yoshinobu Tsujii, Takeshi Fukuda
-
Publication number: 20070212312Abstract: The present invention relates to metal oxide complex powder obtained by polymerizing a polymerizable and unsaturated group-containing monomer via a polymerization initiation group introduced onto the surface of at least one metal oxide selected from zinc oxide, titanium oxide and cerium oxide and cosmetics containing the metal oxide complex power.Type: ApplicationFiled: March 30, 2005Publication date: September 13, 2007Applicant: Kao CorporationInventors: Kazuo Kuwahara, Kohji Ohno, Takeshi Fukuda
-
Patent number: 7256243Abstract: The present invention provides a novel silicon compound represented by Formula (1) having a living radical polymerization initiating ability for addition-polymerizable monomers and a polymer obtained using the same. The above polymer can provide an organic-inorganic composite material having a distinct structure. wherein R1 is hydrogen, alkyl, aryl or arylalkyl; R2 and R3 are alkyl, phenyl or cyclohexyl; and A is a group having an ability to initiate polymerization of a monomer.Type: GrantFiled: May 4, 2005Date of Patent: August 14, 2007Assignee: Chisso CorporationInventors: Hisao Oikawa, Mikio Yamahiro, Kazuhiro Yoshida, Nobumasa Ootake, Kenichi Watanabe, Kohji Ohno, Yoshinobu Tsujii, Takeshi Fukuda
-
Publication number: 20060287454Abstract: The present invention provides a silicon compound represented by Formula (1) and a polymer obtained by using the same, and this makes it possible not only to obtain an organic-inorganic composite material having a distinct structure but also to control the structure of the above polymer as a molecular aggregate. wherein R1 is a group independently selected from hydrogen, alkyl having a carbon atom number of 1 to 40, substituted or non-substituted aryl and substituted or non-substituted arylalkyl; in this alkyl having a carbon atom number of 1 to 40, optional hydrogens may be substituted with fluorine, and optional —CH2— may be substituted with —O—, —CH?CH—, cycloalkylene or cycloalkenylene; in alkylene in this arylalkyl, optional hydrogens may be substituted with fluorine, and optional —CH2— may be substituted with —O— or —CH?CH—; and A1 is a group having an ?-haloester bond.Type: ApplicationFiled: March 5, 2004Publication date: December 21, 2006Inventors: Mikio Yamahiro, Hisao Oikawa, Kenya Ito, Yasuhiro Yamamoto, Masami Tanaka, Nobumasa Ootake, Kenichi Watanabe, Kohji Ohno, Yoshinobu Tsujii, Takeshi Fukuda
-
Publication number: 20060175684Abstract: Since the majority of conventional organic/inorganic composite materials are obtained by mechanical blending of a silsesquioxane and an organic polymer or other means, it was extremely difficult to control the structure of the composite as a molecular agglomerate. In order to solve such a problem, the invention is to provide a silicon compound represented by Formula (1). This novel silicon compound has a living radical polymerization initiating ability for addition polymerizable monomers of a wide range. In Formula (1), R1 is hydrogen, an alkyl, an aryl, or an arylalkyl; R2 is an alkyl, phenyl, or cyclohexyl; and A is a group having a polymerization initiating ability for addition polymerizable monomers.Type: ApplicationFiled: December 27, 2005Publication date: August 10, 2006Inventors: Hisao Oikawa, Mikio Yamahiro, Koji Ohguma, Nobumasa Ootake, Kenichi Watanabe, Kohji Ohno, Yoshinobu Tsujii, Takeshi Fukuda
-
Publication number: 20050288468Abstract: A silicon compound represented by Formula (1). In Formula (1), R1 is a group independently selected respectively from the group consisting of a hydrogen atom, alkyl, substituted or non-substituted aryl and substituted or non-substituted arylalkyl, and A1 is an organic group substituted with a halogenated sulfonyl group and is preferably a group represented by Formula (2). In Formula (2), X is halogen; R2 is alkyl; a is an integer of 0 to 2; and Z1 is a single bond or alkylene having a carbon number of 1 to 10. The silicon compound provided by the present invention is a silsesquioxane derivative having an excellent living polymerizable radical polymerization initiating function. For example, it is possible to commence polymerization by allowing an acryl base monomer to coexist to form an acryl base polymer making use of one point of the structure of the silsesquioxane in the present invention as a starting point.Type: ApplicationFiled: August 7, 2003Publication date: December 29, 2005Inventors: Kohji Ohno, Yoshinobu Tsujii, Takeshi Fukuda
-
Publication number: 20050250925Abstract: The present invention provides a novel silicon compound represented by Formula (1) having a living radical polymerization initiating ability for addition-polymerizable monomers and a polymer obtained using the same. The above polymer can provide an organic-inorganic composite material having a distinct structure. wherein R1 is hydrogen, alkyl, aryl or arylalkyl; R2 and R3 are alkyl, phenyl or cyclohexyl; and A is a group having an ability to initiate polymerization of a monomer.Type: ApplicationFiled: May 4, 2005Publication date: November 10, 2005Inventors: Hisao Oikawa, Mikio Yamahiro, Kazuhiro Yoshida, Nobumasa Ootake, Kenichi Watanabe, Kohji Ohno, Yoshinobu Tsujii, Takeshi Fukuda