Patents by Inventor Koichi Hamamoto

Koichi Hamamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200194956
    Abstract: A solid state laser apparatus (1) is provided with a plurality of cold heads (20), a cooling apparatus (10), laser media (30) and a seed light source (40). The cooling apparatus cools the plurality of cold heads. The plurality of laser media are arranged in contact to each of the plurality of cold heads, amplify an irradiated first laser beam and reflects the first laser beam. The seed light source irradiates a first laser medium (30-1) of the plurality of laser media with the first laser beam. In addition, the plurality of laser media reflects the first laser beam irradiated to the first laser medium to a laser medium arranged to a cold head different from the cold head where the relevant laser medium is arranged. In addition, the plurality of cold heads cools the plurality of laser media.
    Type: Application
    Filed: November 2, 2018
    Publication date: June 18, 2020
    Inventors: Koichi HAMAMOTO, Ryuichi MATSUDA
  • Patent number: 10502922
    Abstract: A laser array device includes a first lens tube (10) through which a first laser beam (1) passes, a second lens tube (20) through which a second laser beam (2) passes, a support mechanism (72, 74) disposed to support the first lens tube (10) and the second lens tube to be parallel to each other, a first lens (12) arranged in the first lens tube (10), and a second lens (22) arranged in the second lens tube (20). A first temperature-rise suppressing mechanism (110) is disposed in the first lens tube (10) to suppress temperature rise of the first lens tube (10).
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: December 10, 2019
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Koichi Hamamoto, Shingo Nishikata, Tomoya Morioka, Atsushi Ochiai
  • Publication number: 20190215076
    Abstract: A solid obstacle is removed with a high-power laser beam to establish a transmission path for a spatial laser communication. When a space in which the laser beam is transmitted is blocked off by the solid obstacle, the spatial laser communication cannot be carried out.
    Type: Application
    Filed: February 10, 2017
    Publication date: July 11, 2019
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Shingo NISHIKATA, Hiroshi ARAKAWA, Yoshikatsu KURODA, Hiroshi IKEBUCHI, Yukito HATA, Yuichi ARAKI, Koichi HAMAMOTO, Tomoya MORIOKA, Atsushi OCHIAI
  • Patent number: 10342111
    Abstract: An electromagnetic pulse protecting method includes: searching a threat 2 that generates an electromagnetic pulse 2a; and generating plasma 6 in a light-condensed point 4 by condensing a laser beam 5 on a light-condensed point 4 in response to detection of the threat 2. Thus, various protection objects which contain a protection object having an electric opening indispensably can be protected from an attack by the electromagnetic pulse.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: July 2, 2019
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Shingo Nishikata, Yoshikatsu Kuroda, Hiroshi Ikebuchi, Koichi Hamamoto, Tomoya Morioka, Atsushi Ochiai
  • Patent number: 10290991
    Abstract: This solid laser amplification device has: a laser medium part that has a solid medium, into which a laser light enters from an entrance part and from which the laser light (L) is emitted to the outside from an exit part, and an amplification layer, which is provided on the surface of the medium, receives the laser light in the medium, and amplifies and reflects said light toward the exit part; a microchannel cooling part that cools the amplification layer; and a thermally conductive part that is provided so as to make contact between the amplification layer and the cooling part and transfers the heat of the amplification layer to the cooling part.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: May 14, 2019
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yoshiyuki Kondo, Yuichi Otani, Yoshiteru Komuro, Atsushi Kodama, Koichi Hamamoto, Hiroyuki Daigo, Naoki Inoue, Tomoya Morioka, Masahiro Kato, Shingo Nishikata
  • Patent number: 10236655
    Abstract: A solid laser amplification device having a laser medium that has a solid medium, into which a laser light enters and from which the laser light is emitted, and an amplification layer, provided on the surface of the medium, receives the laser light in the medium, and amplifies and reflects the light toward the exit; and a microchannel cooling part that has a plurality of cooling pipelines, into which a cooling solvent is conducted and which are arranged parallel to the surface of the amplification layer, and a cooling surface, at the outer periphery of the cooling pipelines and attached on the surface of the amplification layer, the microchannel cooling part cooling the amplification layer. The closer the position of the cooling pipeline to a position facing a section of the amplification layer that receives the laser light, the greater the cooling force exhibited by the cooling part.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: March 19, 2019
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yoshiyuki Kondo, Yuichi Otani, Yoshiteru Komuro, Atsushi Kodama, Koichi Hamamoto, Hiroyuki Daigo, Naoki Inoue, Tomoya Morioka, Masahiro Kato, Shingo Nishikata
  • Patent number: 10164397
    Abstract: A laser oscillation device includes: a refrigerant container; at least one cartridge which is attached to the refrigerant container and which includes a laser gain medium and an incidence path section for guiding laser seed light to the laser gain medium; at least one nozzle for spraying a refrigerant to the laser gain medium, the at least one nozzle being disposed inside the refrigerant container, and a vacuum heat insulating container housing the refrigerant container inside and forming a vacuum insulation layer on an outer peripheral side of the refrigerant container. The cartridge is disposed so as to be insertable and removable with respect to the refrigerant container along a longitudinal direction of the laser gain medium.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: December 25, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Ryuichi Matsuda, Shingo Nishikata, Koichi Hamamoto
  • Publication number: 20180233874
    Abstract: A solid-state laser device includes an inner container, an outer container, a cooling medium supply unit, and a cover section. The inner container in which a laser medium is accommodated includes an inner light-transmitting unit. An outer light-transmitting unit of the outer container is provided at a part that faces the inner light-transmitting unit and is vacuum-insulated from the inner light-transmitting unit. The cooling medium supply unit supplies a cooling medium so that the cooling medium comes in contact with a surface other than a light input and output surface in the laser medium. The cover section partitions a light-passing area from a cooling medium supply area to which the cooling medium is supplied.
    Type: Application
    Filed: January 12, 2017
    Publication date: August 16, 2018
    Inventors: Koichi HAMAMOTO, Ryuichi MATSUDA
  • Patent number: 10014646
    Abstract: A laser oscillation cooling device (100) includes a light emitting section (1) that emits laser excitation light (Z1), a laser excitation section (2) that excites the laser excitation light (Z1) to emit laser light (Z2) and has a heat generating region (S) where heat is locally generated, a storage tank (3) capable of storing an extremely low temperature liquid (L), a pressurizing section (31) that brings the extremely low temperature liquid (L) into a sub-cool state by pressurizing the inside of the storage tank (3), and a jetting supply section (4) that removes heat from the laser excitation section (2) by jetting the extremely low temperature liquid (L) in the sub-cool state from a plurality of jet ports arrayed in a two-dimensional manner to the laser excitation section (2).
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: July 3, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Jiro Kasahara, Junnosuke Nakatani, Yuichi Otani, Naoki Inoue, Koichi Hamamoto, Shingo Nishikata
  • Patent number: 9997270
    Abstract: A lithium ion conductive substance is provided that is characterized by containing a compound wherein a composite oxide represented by Li1+x+yAlxTi2?xSiyP3?yO12 (0?x?1 and 0?y?1) is doped with at least one kind of element selected from Zr, Hf, Y, and Sm. Furthermore, a method for manufacturing the lithium ion conductive substance is provided that includes the following steps: (a) a step of forming an inorganic substance that contains predetermined quantities of a Li component, an Al component, a Ti component, a Si component, and a P component, into a sheet shape, and (b) a step of interposing between materials that contain at least one kind of element selected from Zr, Hf, Y, and Sm, and sintering, a sheet-shaped formed body obtained at step (a).
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: June 12, 2018
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Koichi Hamamoto, Yoshinobu Fujishiro, Danila Victorovich Matveev
  • Publication number: 20180145473
    Abstract: This solid laser amplification device has: a laser medium part that has a solid medium, into which a laser light enters from an entrance part and from which the laser light (L) is emitted to the outside from an exit part, and an amplification layer, which is provided on the surface of the medium, receives the laser light in the medium, and amplifies and reflects said light toward the exit part; a microchannel cooling part that cools the amplification layer; and a thermally conductive part that is provided so as to make contact between the amplification layer and the cooling part and transfers the heat of the amplification layer to the cooling part.
    Type: Application
    Filed: June 8, 2016
    Publication date: May 24, 2018
    Inventors: Yoshiyuki KONDO, Yuichi OTANI, Yoshiteru KOMURO, Atsushi KODAMA, Koichi HAMAMOTO, Hiroyuki DAIGO, Naoki INOUE, Tomoya MORIOKA, Masahiro KATO, Shingo NISHIKATA
  • Publication number: 20180145474
    Abstract: A solid laser amplification device having a laser medium that has a solid medium, into which a laser light enters and from which the laser light is emitted, and an amplification layer, provided on the surface of the medium, receives the laser light in the medium, and amplifies and reflects the light toward the exit; and a microchannel cooling part that has a plurality of cooling pipelines, into which a cooling solvent is conducted and which are arranged parallel to the surface of the amplification layer, and a cooling surface, at the outer periphery of the cooling pipelines and attached on the surface of the amplification layer, the microchannel cooling part cooling the amplification layer. The closer the position of the cooling pipeline to a position facing a section of the amplification layer that receives the laser light, the greater the cooling force exhibited by the cooling part.
    Type: Application
    Filed: June 8, 2016
    Publication date: May 24, 2018
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yoshiyuki KONDO, Yuichi OTANI, Yoshiteru KOMURO, Atsushi KODAMA, Koichi HAMAMOTO, Hiroyuki DAIGO, Naoki INOUE, Tomoya MORIOKA, Masahiro KATO, Shingo NISHIKATA
  • Publication number: 20180092195
    Abstract: An electromagnetic pulse protecting method includes: searching a threat 2 that generates an electromagnetic pulse 2a; and generating plasma 6 in a light-condensed point 4 by condensing a laser beam 5 on a light-condensed point 4 in response to detection of the threat 2. Thus, various protection objects which contain a protection object having an electric opening indispensably can be protected from an attack by the electromagnetic pulse.
    Type: Application
    Filed: April 14, 2016
    Publication date: March 29, 2018
    Inventors: Shingo NISHIKATA, Yoshikatsu KURODA, Hiroshi IKEBUCHI, Koichi HAMAMOTO, Tomoya MORIOKA, Atsushi OCHIAI
  • Publication number: 20180083408
    Abstract: A laser oscillation device includes: a refrigerant container; at least one cartridge which is attached to the refrigerant container and which includes a laser gain medium and an incidence path section for guiding laser seed light to the laser gain medium; at least one nozzle for spraying a refrigerant to the laser gain medium, the at least one nozzle being disposed inside the refrigerant container, and a vacuum heat insulating container housing the refrigerant container inside and forming a vacuum insulation layer on an outer peripheral side of the refrigerant container. The cartridge is disposed so as to be insertable and removable with respect to the refrigerant container along a longitudinal direction of the laser gain medium.
    Type: Application
    Filed: September 17, 2015
    Publication date: March 22, 2018
    Inventors: Ryuichi MATSUDA, Shingo NISHIKATA, Koichi HAMAMOTO
  • Publication number: 20180080747
    Abstract: A method of irradiating an electromagnetic pulse includes specifying a position of a target having electronic equipment; setting the light-condensing point based on the position of the target; and condensing the laser beam to generate plasma in the light-condensing point such that the electromagnetic pulse generated from the plasma is irradiated to the electronic equipment. In this way, a method and system for irradiating an electromagnetic pulse are realized which can irradiate the electromagnetic pulse of a large output while restraining diffusion of the electromagnetic pulse.
    Type: Application
    Filed: April 14, 2016
    Publication date: March 22, 2018
    Inventors: Shingo NISHIKATA, Yoshikatsu KURODA, Hiroshi IKEBUCHI, Koichi HAMAMOTO, Tomoya MORIOKA, Atsushi OCHIAI
  • Publication number: 20180074282
    Abstract: A laser array device includes a first lens tube (10) through which a first laser beam (1) passes, a second lens tube (20) through which a second laser beam (2) passes, a support mechanism (72, 74) disposed to support the first lens tube (10) and the second lens tube to be parallel to each other, a first lens (12) arranged in the first lens tube (10), and a second lens (22) arranged in the second lens tube (20). A first temperature-rise suppressing mechanism (110) is disposed in the first lens tube (10) to suppress temperature rise of the first lens tube (10).
    Type: Application
    Filed: March 16, 2016
    Publication date: March 15, 2018
    Inventors: Koichi HAMAMOTO, Shingo NISHIKATA, Tomoya MORIOKA, Atsushi OCHIAI
  • Publication number: 20180026416
    Abstract: A laser oscillation cooling device (100) includes a light emitting section (1) that emits laser excitation light (Z1), a laser excitation section (2) that excites the laser excitation light (Z1) to emit laser light (Z2) and has a heat generating region (S) where heat is locally generated, a storage tank (3) capable of storing an extremely low temperature liquid (L), a pressurizing section (31) that brings the extremely low temperature liquid (L) into a sub-cool state by pressurizing the inside of the storage tank (3), and a jetting supply section (4) that removes heat from the laser excitation section (2) by jetting the extremely low temperature liquid (L) in the sub-cool state from a plurality of jet ports arrayed in a two-dimensional manner to the laser excitation section (2).
    Type: Application
    Filed: November 20, 2015
    Publication date: January 25, 2018
    Inventors: Jiro KASAHARA, Junnosuke NAKATANI, Yuichi OTANI, Naoki INOUE, Koichi HAMAMOTO, Shingo NISHIKATA
  • Patent number: 9859674
    Abstract: A laser oscillation cooling device (100) is provided with a light emitting section (1) that emits laser excitation light (Z1), a laser excitation section (2) that excites the laser excitation light (Z1) to emit laser light (Z2) and locally generates heat, a storage tank (3) capable of storing an extremely low temperature liquid (L), a pressurizing section (31) that brings extremely low temperature liquid (L) into a sub-cool state by pressurizing the inside of the storage tank (3), and a jetting supply section (4) that removes heat from the laser excitation section (2) by jetting the extremely low temperature liquid (L) in the sub-cool state to the laser excitation section (2).
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: January 2, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Jiro Kasahara, Naoki Inoue, Koichi Hamamoto
  • Patent number: 9825418
    Abstract: A laser-oscillation cooling device includes a laser excitation unit that excites a laser beam and locally emits heat, a storage tank that is capable of storing a cryogenic liquid at an atmospheric pressure and discharge the cryogenic liquid which is evaporated, a pressurization and supply unit that pressurizes the cryogenic liquid stored in the storage tank and supplies the pressurized cryogenic liquid to the laser excitation unit, and a decompression and return unit that decompresses the cryogenic liquid which is supplied to the laser excitation unit and used to cool the laser excitation unit and returns the cryogenic liquid to the storage tank.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: November 21, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Jiro Kasahara, Yoshiyuki Kondo, Shinya Ishii, Koichi Hamamoto
  • Publication number: 20170279244
    Abstract: A laser oscillation cooling device (100) is provided with a light emitting section (1) that emits laser excitation light (Z1), a laser excitation section (2) that excites the laser excitation light (Z1) to emit laser light (Z2) and locally generates heat, a storage tank (3) capable of storing an extremely low temperature liquid (L), a pressurizing section (31) that brings extremely low temperature liquid (L) into a sub-cool state by pressurizing the inside of the storage tank (3), and a jetting supply section (4) that removes heat from the laser excitation section (2) by jetting the extremely low temperature liquid (L) in the sub-cool state to the laser excitation section (2).
    Type: Application
    Filed: September 25, 2015
    Publication date: September 28, 2017
    Inventors: Jiro KASAHARA, Naoki INOUE, Koichi HAMAMOTO