Patents by Inventor Koichi Sakairi

Koichi Sakairi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11971633
    Abstract: An electrode structure includes: a plurality of pixel electrodes arranged separately from each other; and a plurality of dielectric layers laminated in a first direction with respect to the plurality of pixel electrodes, in which the plurality of dielectric layers includes: a first dielectric layer that spreads over the plurality of pixel electrodes in a direction intersecting with the first direction; and a second dielectric layer that includes dielectric material having a refractive index higher than that of the first dielectric layer, sandwiches the first dielectric layer together with the plurality of pixel electrodes, and has a slit at a position overlapping space between pixel electrodes adjacent when viewed from the first direction.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: April 30, 2024
    Assignees: SONY SEMICONDUCTOR SOLUTIONS CORPORATION, SONY GROUP CORPORATION
    Inventors: Takashi Sakairi, Tomoaki Honda, Tsuyoshi Okazaki, Keiichi Maeda, Chiho Araki, Katsunori Dai, Shunsuke Narui, Kunihiko Hikichi, Kouta Fukumoto, Toshiaki Okada, Takuma Matsuno, Yuu Kawaguchi, Yuuji Adachi, Koichi Amari, Hideki Kawaguchi, Seiya Haraguchi, Takayoshi Masaki, Takuya Fujino, Tadayuki Dofuku, Yosuke Takita, Kazuhiro Tamura, Atsushi Tanaka
  • Patent number: 11066728
    Abstract: The present invention relates to a Ni-based heat-resistant alloy including Ir: 5.0 mass % or more and 50.0 mass % or less, Al: 1.0 mass % or more and 8.0 mass % or less, W: 5.0 mass % or more and 25.0 mass % or less, and balance Ni, having an L12-structured ?? phase present in the matrix, and including at least one of Zr: 0.01 mass % or more and 3.0 mass % or less and Hf: 0.01 mass % or more and 3.0 mass % or less. This Ni-based heat-resistant alloy has improved toughness over a conventional Ni-based heat-resistant alloy based on a Ni—Ir—Al—W-based alloy, and is also excellent in ambient-temperature strength.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: July 20, 2021
    Assignees: TOHOKU TECHNO ARCH CO., LTD., TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Kiyohito Ishida, Toshihiro Omori, Yutaka Sato, Koichi Sakairi, Kunihiro Tanaka, Tatsuya Nakazawa
  • Patent number: 11053570
    Abstract: The present invention relates to a Ni-based heat-resistant alloy including Ir: 5.0 mass % or more and 50.0 mass % or less, Al: 1.0 mass % or more and 8.0 mass % or less, W: 5.0 mass % or more and 25.0 mass % or less, and balance Ni, having an L12-structured ?? phase present in the matrix, and including at least one of Ru: 0.8 mass % or more and 5.0 mass % or less and Re: 0.8 mass % or more and 5.0 mass % or less. This Ni-based heat-resistant alloy has improved toughness over a conventional Ni-based heat-resistant alloy based on a Ni—Ir—Al—W-based alloy, and is also excellent in ambient-temperature strength.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: July 6, 2021
    Assignees: TOHOKU TECHNO ARCH CO., LTD., TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Kiyohito Ishida, Toshihiro Omori, Yutaka Sato, Koichi Sakairi, Kunihiro Tanaka, Tatsuya Nakazawa
  • Publication number: 20190338398
    Abstract: The present invention relates to a Ni-based heat-resistant alloy including Ir: 5.0 mass % or more and 50.0 mass % or less, Al: 1.0 mass % or more and 8.0 mass % or less, W: 5.0 mass % or more and 25.0 mass % or less, and balance Ni, having an L12-structured ?? phase present in the matrix, and including at least one of Ru: 0.8 mass % or more and 5.0 mass % or less and Re: 0.8 mass % or more and 5.0 mass % or less. This Ni-based heat-resistant alloy has improved toughness over a conventional Ni-based heat-resistant alloy based on a Ni—Ir—Al—W-based alloy, and is also excellent in ambient-temperature strength.
    Type: Application
    Filed: December 4, 2017
    Publication date: November 7, 2019
    Applicants: TOHOKU TECHNO ARCH CO., LTD., TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Kiyohito ISHIDA, Toshihiro OMORI, Yutaka SATO, Koichi SAKAIRI, Kunihiro TANAKA, Tatsuya NAKAZAWA
  • Publication number: 20190316229
    Abstract: The present invention relates to a Ni-based heat-resistant alloy including Ir: 5.0 mass % or more and 50.0 mass % or less, Al: 1.0 mass % or more and 8.0 mass % or less, W: 5.0 mass % or more and 25.0 mass % or less, and balance Ni, having an L12-structured ?? phase present in the matrix, and including at least one of Zr: 0.01 mass % or more and 3.0 mase/0 or less and Hf: 0.01 mass % or more and 3.0 mass % or less. This Ni-based heat-resistant alloy has improved toughness over a conventional Ni-based heat-resistant alloy based on a Ni—Ir—Al—W-based alloy, and is also excellent in ambient-temperature strength.
    Type: Application
    Filed: December 5, 2017
    Publication date: October 17, 2019
    Applicants: TOHOKU TECHNO ARCH CO., LTD., TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Kiyohito ISHIDA, Toshihiro OMORI, Yutaka SATO, Koichi SAKAIRI, Kunihiro TANAKA, Tatsuya NAKAZAWA
  • Patent number: 10137496
    Abstract: The present invention provides a metal wire rod composed of iridium or an iridium alloy, wherein the number of crystal grains on any cross-section in a longitudinal direction is 2 to 20 per 0.25 mm2, and the Vickers hardness at any part is 200 Hv or more and less than 400 Hv. The iridium wire rod is a material which is produced by a ?-PD method, and has low residual stress and which has a small change in the number of crystal grains and hardness even when heated to a temperature equal to or higher than a recrystallization temperature (1200° C. to 1500° C.). The metal wire rod of the present invention is excellent in oxidative consumption resistance under a high-temperature atmosphere, and mechanical properties.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: November 27, 2018
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Akira Yoshikawa, Yuui Yokota, Muneki Nakamura, Kunihiro Tanaka, Tatsuya Nakazawa, Koichi Sakairi
  • Patent number: 10094012
    Abstract: The present invention relates to a NiIr-base heat-resistant alloy which includes a Ni—Ir—Al—W-base alloy which contains Ir: 5.0 to 50.0 mass %, Al: 1.0 to 8.0 mass %, W: 5.0 to 20.0 mass %, and the balance is Ni, and a ?? phase having an L12 structure precipitating and dispersing in a matrix as an essential strengthening phase, and a ratio (Y/X) of a peak intensity (Y) of (201) plane of the Ir3W phase observed in the range of 2?=48° to 50° to a peak intensity (X) of (111) plane of the ?? phase observed in the range of 2?=43° to 45° in X-ray diffraction analysis is 0.5 or less. The alloy exhibits good high-temperature property stably.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: October 9, 2018
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Kiyohito Ishida, Toshihiro Omori, Yutaka Sato, Kunihiro Tanaka, Muneki Nakamura, Koichi Sakairi, Tatsuya Nakazawa
  • Patent number: 10081855
    Abstract: The present invention is a heat-resistant Ni-base alloy including a Ni—Ir—Al—W alloy having essential additive elements of Ir, Al, and W added to Ni, wherein the heat-resistant Ni-base alloy includes Ir: 5.0 to 50.0 mass %, Al: 1.0 to 8.0 mass %, and W: 5.0 to 20.0 mass %, the balance being Ni, and a ?? phase having an L12 structure disperses in a matrix as an essential strengthening phase. The heat-resistant material including the Ni-base alloy may contain one or more additive elements selected from B: 0.001 to 0.1 mass %, Co: 5.0 to 20.0 mass %, Cr: 1.0 to 25.0 mass %, Ta: 1.0 to 10.0 mass %, Nb: 1.0 to 5.0 mass %, Ti: 1.0 to 5.0 mass %, V: 1.0 to 5.0 mass %, and Mo: 1.0 to 5.0 mass %, or 0.001 to 0.5 mass % of C.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: September 25, 2018
    Assignees: TANAKA KIKINZOKU KOGYO K.K., TOHOKU TECHNO ARCH CO., LTD.
    Inventors: Kiyohito Ishida, Toshihiro Omori, Yutaka Sato, Kunihiro Tanaka, Muneki Nakamura, Koichi Sakairi
  • Patent number: 10047415
    Abstract: The present invention is a metallic wire rod comprising iridium or an iridium-containing alloy and, the wire rod has in the cross section thereof biaxial crystal orientation of 50% or more of abundance proportion of textures in which crystallographic orientation has preferred orientation to <100> direction. In the present invention, crystal orientation in the outer periphery from semicircle of the cross section which is the periphery of the wire rod is important, and in this zone, abundance proportion of textures in which crystallographic orientation has preferred orientation to <100> direction is preferably not less than 50%.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: August 14, 2018
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Koichi Sakairi, Kunihiro Tanaka, Muneki Nakamura, Fumie Seki
  • Patent number: 9806500
    Abstract: The present invention relates to a tape material for manufacturing an ignition plug electrode, the tape material being a member for forming an electrode chip, in which a base metal layer and a precious metal layer are cladded, on a bonded region set on an electrode base material of an ignition plug, the member is in the form of a long tape in which the base metal layer being in contact with the bonded region is cladded with the precious metal layer being in contact with the base metal layer, the base metal layer has a width substantially equal to one of the longitudinal width, lateral width and diameter of the bonded region. According to the present invention, bonding between a precious metal chip and a substrate can be reliably maintained to prolong the life of an ignition plug. Accordingly, precious metals can be efficiently used to save resources.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: October 31, 2017
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Koichi Sakairi, Hiroshi Matsuo, Kunihiro Tanaka
  • Patent number: 9784709
    Abstract: The present invention relates to a gas sensor electrode including a conductive particle phase made of Pt or Pt alloy and a ceramic particle phase being mixed and dispersed, wherein a rate of content of the ceramic particle phase is 6.0 to 22.0 mass %, and a void ratio is 2.5 to 10.0%, and a dispersion degree of the conductive particle phase per length of 25 ?m on the electrode surface is 0.60 to 0.85 ?m, and a dispersion degree of the conductive particle phase in the electrode cross section per length of 100 ?m in a direction parallel to the electrode surface is 2.0 to 4.0 ?m. This electrode can be produced by firing a metal paste made by dispersing, in a solvent, a conductive particle having a core/shell structure in which a core particle such as Pt is covered with a ceramic shell and ceramic powder. The gas sensor electrode according to the present invention has a high electrode activity.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: October 10, 2017
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Nobuhisa Okamoto, Takuya Hosoi, Koichi Sakairi
  • Publication number: 20170264082
    Abstract: The present invention relates to a tape material for manufacturing an ignition plug electrode, the tape material being a member for forming an electrode chip, in which a base metal layer and a precious metal layer are cladded, on a bonded region set on an electrode base material of an ignition plug, the member is in the form of a long tape in which the base metal layer being in contact with the bonded region is cladded with the precious metal layer being in contact with the base metal layer, the base metal layer has a width substantially equal to one of the longitudinal width, lateral width and diameter of the bonded region. According to the present invention, bonding between a precious metal chip and a substrate can be reliably maintained to prolong the life of an ignition plug. Accordingly, precious metals can be efficiently used to save resources.
    Type: Application
    Filed: September 11, 2015
    Publication date: September 14, 2017
    Inventors: Koichi SAKAIRI, Hiroshi MATSUO, Kunihiro TANAKA
  • Publication number: 20170130310
    Abstract: The present invention relates to a NiIr-base heat-resistant alloy which includes a Ni—Ir—Al—W-base alloy which contains Ir: 5.0 to 50.0 mass %, Al: 1.0 to 8.0 mass %, W: 5.0 to 20.0 mass %, and the balance is Ni, and a ?? phase having an L12 structure precipitating and dispersing in a matrix as an essential strengthening phase, and a ratio (Y/X) of a peak intensity (Y) of (201) plane of the Ir3W phase observed in the range of 2?=48° to 50° to a peak intensity (X) of (111) plane of the ?? phase observed in the range of 2?=43° to 45° in X-ray diffraction analysis is 0.5 or less. The alloy exhibits good high-temperature property stably.
    Type: Application
    Filed: March 23, 2015
    Publication date: May 11, 2017
    Applicant: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Kiyohito ISHIDA, Toshihiro OMORI, Yutaka SATO, Kunihiro TANAKA, Muneki NAKAMURA, Koichi SAKAIRI, Tatsuya NAKAZAWA
  • Publication number: 20170107594
    Abstract: The present invention relates to a technique for recovering and recycling a platinum paste. The present invention provides a method for recovering a metal powder from a platinum paste formed by mixing a solid component composed of a metal powder including at least a platinum powder or a platinum alloy powder and an organic component including at least an organic solvent, the method including removing the organic component by heating the platinum paste at a recovery temperature set in a temperature range of 300° C. or higher and 500° C. or lower. The recovered metal powder can be recycled into a platinum paste equivalent to a new product by mixing the metal powder with a solvent etc.
    Type: Application
    Filed: March 12, 2015
    Publication date: April 20, 2017
    Inventors: Nobuhisa Okamoto, Takuya Hosoi, Koichi Sakairi
  • Publication number: 20170072458
    Abstract: The present invention provides a metal wire rod composed of iridium or an iridium alloy, wherein the number of crystal grains on any cross-section in a longitudinal direction is 2 to 20 per 0.25 mm2, and the Vickers hardness at any part is 200 Hv or more and less than 400 Hv. The iridium wire rod is a material which is produced by a ?-PD method, and has low residual stress and which has a small change in the number of crystal grains and hardness even when heated to a temperature equal to or higher than a recrystallization temperature (1200° C. to 1500° C.). The metal wire rod of the present invention is excellent in oxidative consumption resistance under a high-temperature atmosphere, and mechanical properties.
    Type: Application
    Filed: March 23, 2015
    Publication date: March 16, 2017
    Inventors: Akira YOSHIKAWA, Yuui YOKOTA, Muneki NAKAMURA, Kunihiro TANAKA, Tatsuya NAKAZAWA, Koichi SAKAIRI
  • Patent number: 9556343
    Abstract: An object of the present invention is to provide a conductive fine particle for producing a metal paste that can produce an electrode film having a low resistance, and a metal paste utilizing the conductive fine particle. The present invention is a conductive particle for electrode formation having a core/shell structure, and the conductive particle comprises a core particle made of Pt or a Pt alloy and having a particle diameter of 10 to 200 nm, and a shell made of a ceramic containing Al2O3 or ZrO2 and covers at least a part of the core particle, wherein the ceramic constituting the shell is added in an amount of 0.5 to 15% by weight based on the core particle to cover the core. The core particle is preferably Pt or a Pt alloy alloyed with Pd, Au, Ag, or Rh.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: January 31, 2017
    Assignee: Tanaka Kikinzoku Kogyo K. K.
    Inventors: Takuya Hosoi, Nobuhisa Okamoto, Koichi Sakairi
  • Publication number: 20160040276
    Abstract: The present invention is a heat-resistant Ni-base alloy including a Ni—Ir—Al—W alloy having essential additive elements of Ir, Al, and W added to Ni, wherein the heat-resistant Ni-base alloy includes Ir: 5.0 to 50.0 mass %, Al: 1.0 to 8.0 mass %, and W: 5.0 to 20.0 mass %, the balance being Ni, and a ?? phase having an L12 structure disperses in a matrix as an essential strengthening phase. The heat-resistant material including the Ni-base alloy may contain one or more additive elements selected from B: 0.001 to 0.1 mass %, Co: 5.0 to 20.0 mass %, Cr: 1.0 to 25.0 mass %, Ta: 1.0 to 10.0 mass %, Nb: 1.0 to 5.0 mass %, Ti: 1.0 to 5.0 mass %, V: 1.0 to 5.0 mass %, and Mo: 1.0 to 5.0 mass %, or 0.001 to 0.5 mass % of C.
    Type: Application
    Filed: March 11, 2014
    Publication date: February 11, 2016
    Inventors: Kiyohito ISHIDA, Toshihiro OMORI, Yutaka SATO, Kunihiro TANAKA, Muneki NAKAMURA, Koichi SAKAIRI
  • Patent number: 9245660
    Abstract: The present invention is an electroconductive particle for forming an electrode including a precious metal particle including Pt or a Pt alloy and having an average particle diameter of 50 to 150 nm, a first ceramic particle including Al2O3 or ZrO2 dispersed in the precious metal particle and having an average particle diameter of 5 to 50 nm, and a second ceramic particle including Al2O3 or ZrO2 bonded to an outer periphery of the precious metal particle and having an average particle diameter of 5 to 50 nm. The sum of the volume of the first ceramic particle and the volume of the second ceramic particle is preferably 2 to 40 vol % based on the whole electroconductive particle. A metal paste containing the electroconductive particle according to the invention is one from which an electrode film of low resistance and excellent durability can be manufactured and further excellent in adherence and conformability to a substrate.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: January 26, 2016
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Takuya Hosoi, Nobuhisa Okamoto, Koichi Sakairi
  • Publication number: 20150241384
    Abstract: The present invention relates to a gas sensor electrode including a conductive particle phase made of Pt or Pt alloy and a ceramic particle phase being mixed and dispersed, wherein a rate of content of the ceramic particle phase is 6.0 to 22.0 mass %, and a void ratio is 2.5 to 10.0%, and a dispersion degree of the conductive particle phase per length of 25 ?m on the electrode surface is 0.60 to 0.85 ?m, and a dispersion degree of the conductive particle phase in the electrode cross section per length of 100 ?m in a direction parallel to the electrode surface is 2.0 to 4.0 ?m. This electrode can be produced by firing a metal paste made by dispersing, in a solvent, a conductive particle having a core/shell structure in which a core particle such as Pt is covered with a ceramic shell and ceramic powder. The gas sensor electrode according to the present invention has a high electrode activity.
    Type: Application
    Filed: September 17, 2013
    Publication date: August 27, 2015
    Applicant: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Nobuhisa Okamoto, Takuya Hosoi, Koichi Sakairi
  • Publication number: 20150123045
    Abstract: An object of the present invention is to provide a conductive fine particle for producing a metal paste that can produce an electrode film having a low resistance, and a metal paste utilizing the conductive fine particle. The present invention is a conductive particle for electrode formation having a core/shell structure, and the conductive particle comprises a core particle made of Pt or a Pt alloy and having a particle diameter of 10 to 200 nm, and a shell made of a ceramic containing Al2O3 or ZrO2 and covers at least a part of the core particle, wherein the ceramic constituting the shell is added in an amount of 0.5 to 15% by weight based on the core particle to cover the core. The core particle is preferably Pt or a Pt alloy alloyed with Pd, Au, Ag, or Rh.
    Type: Application
    Filed: April 14, 2014
    Publication date: May 7, 2015
    Applicant: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Takuya Hosoi, Nobuhisa Okamoto, Koichi Sakairi