Patents by Inventor Koichiro Hinokuma

Koichiro Hinokuma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10403927
    Abstract: In one embodiment, a thin film solid state lithium ion secondary battery is able to be charged and discharged in the air and is able to be manufactured stably at a favorable yield. The thin film solid state lithium ion secondary battery has an electric insulating substrate formed from an organic resin, an inorganic insulating film provided on the substrate face, a cathode-side current collector film, a cathode active material film, a solid electrolyte film, an anode potential formation layer, and an anode-side current collector film. The cathode-side current collector film and/or the anode-side current collector film is formed on the inorganic insulating film face. The anode potential formation layer is a layer formed from the same material as that of the cathode active material film or a material different from that of the cathode active material film and is a layer provided for forming anode potential at the time of discharge.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: September 3, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Yuichi Sabi, Katsunori Takahara, Hiroyuki Morioka, Tatsuya Furuya, Koichiro Hinokuma, Reina Ichikawa, Yui Senda, Momoe Adachi
  • Patent number: 10290875
    Abstract: An electrode material for a secondary cell includes a porous carbon material having an absolute value of a differential value of a mass using a temperature as a parameter exceeding 0 at 360° C. and being 0.016 or more at 290° C. provided by thermally analyzing a mixture of the porous carbon material and S8 sulfur at a mass ratio of 1:2.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: May 14, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Shun Yamanoi, Seiichiro Tabata, Hironori Iida, Kenji Kishimoto, Yosuke Saito, Shinichiro Yamada, Kazumasa Takeshi, Koichiro Hinokuma
  • Publication number: 20170301948
    Abstract: In one embodiment, a thin film solid state lithium ion secondary battery is able to be charged and discharged in the air and is able to be manufactured stably at a favorable yield. The thin film solid state lithium ion secondary battery has an electric insulating substrate formed from an organic resin, an inorganic insulating film provided on the substrate face, a cathode-side current collector film, a cathode active material film, a solid electrolyte film, an anode potential formation layer, and an anode-side current collector film. The cathode-side current collector film and/or the anode-side current collector film is formed on the inorganic insulating film face. The anode potential formation layer is a layer formed from the same material as that of the cathode active material film or a material different from that of the cathode active material film and is a layer provided for forming anode potential at the time of discharge.
    Type: Application
    Filed: May 3, 2017
    Publication date: October 19, 2017
    Inventors: Yuichi Sabi, Katsunori Takahara, Hiroyuki Morioka, Tatsuya Furuya, Koichiro Hinokuma, Reina Ichikawa, Yui Senda, Momoe Adachi
  • Patent number: 9673481
    Abstract: In one embodiment, a thin film solid state lithium ion secondary battery is able to be charged and discharged in the air and manufactured stably at a favorable yield. The thin film solid state lithium ion secondary battery has an electric insulating substrate formed from an organic resin, an inorganic insulating film provided on the substrate face, a cathode-side current collector film, a cathode active material film, a solid electrolyte film, an anode potential formation layer, and an anode-side current collector film. The cathode-side current collector film and/or the anode-side current collector film is formed on the inorganic insulating film face. The anode potential formation layer is a layer formed from the same material as that of the cathode active material film or a material different from that of the cathode active material film and is a layer provided for forming anode potential at the time of discharge.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: June 6, 2017
    Assignee: Sony Corporation
    Inventors: Yuichi Sabi, Katsunori Takahara, Hiroyuki Morioka, Tatsuya Furuya, Koichiro Hinokuma, Reina Ichikawa, Yui Senda, Momoe Adachi
  • Publication number: 20160164104
    Abstract: An electrode material for a secondary cell includes a porous carbon material having an absolute value of a differential value of a mass using a temperature as a parameter exceeding 0 at 360° C. and being 0.016 or more at 290° C. provided by thermally analyzing a mixture of the porous carbon material and S8 sulfur at a mass ratio of 1:2.
    Type: Application
    Filed: May 20, 2014
    Publication date: June 9, 2016
    Inventors: Shun YAMANOI, Seiichiro TABATA, Hironori IIDA, Kenji KISHIMOTO, Yosuke SAITO, Shinichiro YAMADA, Kazumasa TAKESHI, Koichiro HINOKUMA
  • Publication number: 20140287306
    Abstract: An electrode material is provided. The electrode material includes a porous carbon material, wherein the porous carbon material has a half-width of diffraction intensity peak of a (100) face or a (101) face of 4 degrees or less with reference to a diffraction angle 2 theta on a basis of an X-ray diffraction method. An absolute value of a differential value of mass can be obtained when a mixture of the porous carbon material and S8 sulfur mixed at a mass ratio of 1:2 is subjected to thermal analysis, where temperature is employed as a parameter, has a value of more than 0 at 450° C. and a value of 1.9 or more at 400° C. A battery and method of manufacture are also provided.
    Type: Application
    Filed: July 19, 2013
    Publication date: September 25, 2014
    Applicant: Sony Corporation
    Inventors: Kazumasa Takeshi, Seiichiro Tabata, Hironori Iida, Shun Yamanoi, Yosuke Saito, Koichiro Hinokuma, Shinichiro Yamada
  • Publication number: 20110281167
    Abstract: A high-performance and inexpensive thin film solid state lithium ion secondary battery that is able to be charged and discharged in the air and is able to be manufactured stably at a favorable yield, and a method of manufacturing the same are provided. The thin film solid state lithium ion secondary battery has an electric insulating substrate 10 formed from an organic resin, an inorganic insulating film provided on the substrate face, a cathode-side current collector film 30, a cathode active material film 40, a solid electrolyte film 50, an anode-side current collector protective film 68, and an anode-side current collector film 70. In the thin film solid state lithium ion secondary battery, the cathode-side current collector film and/or the anode-side current collector film is formed on the inorganic insulating film face.
    Type: Application
    Filed: January 28, 2010
    Publication date: November 17, 2011
    Applicant: SONY CORPORATION
    Inventors: Yuichi Sabi, Koichiro Hinokuma, Katsunori Takahara, Hiroyuki Morioka, Tatsuya Furuya
  • Publication number: 20110274974
    Abstract: In one embodiment, a thin film solid state lithium ion secondary battery is able to be charged and discharged in the air and manufactured stably at a favorable yield. The thin film solid state lithium ion secondary battery has an electric insulating substrate formed from an organic resin, an inorganic insulating film provided on the substrate face, a cathode-side current collector film, a cathode active material film, a solid electrolyte film, an anode potential formation layer, and an anode-side current collector film. The cathode-side current collector film and/or the anode-side current collector film is formed on the inorganic insulating film face. The anode potential formation layer is a layer formed from the same material as that of the cathode active material film or a material different from that of the cathode active material film and is a layer provided for forming anode potential at the time of discharge.
    Type: Application
    Filed: January 28, 2010
    Publication date: November 10, 2011
    Applicant: SONY CORPORATION
    Inventors: Yuichi Sabi, Katsunori Takahara, Hiroyuki Morioka, Tatsuya Furuya, Koichiro Hinokuma, Reina Ichikawa, Yui Senda, Momoe Adachi
  • Patent number: 8007942
    Abstract: Disclosed herein are an ion-dissociative functional compound, a method for production thereof, an ionic conductor, and an electrochemical device, the ion-dissociative functional compound being thermally and chemically stable under the condition required of fuel cells and being suitable for use as a material such as protonic conductor in fuel cells. The proton-dissociative functional compound shown in FIG. 1A is composed of a fullerene C60 molecule and about 10 sulfonic acid groups —SO3H as proton-dissociative groups each attached to the fullerene through a difluoromethane group —CF2—. The proton-dissociative functional compound shown in FIG. 1B is composed of fullerene molecules three-dimensionally connected to each other through a linking group —CF2SO2NHSO2CF2—. It contains, as the proton-dissociative group, sulfoneimide groups —SO2NHSO2— and sulfoneamide groups —SO2H2 in addition to sulfonic acid groups.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: August 30, 2011
    Assignee: Sony Corporation
    Inventors: Kazuaki Fukushima, Shuichi Takizawa, Koichiro Hinokuma, Atsushi Nishimoto, Kazuhiro Noda
  • Patent number: 7771891
    Abstract: Disclosed herein are an ionic conductor including a proton conductor, a process for production thereof, and an electrochemical device (such as fuel cell) with said ionic conductor, said ionic conductor being superior in ionic conductivity, water resistance, and film forming properties. The ionic conductor is formed from a polymer in which carbon clusters having ion dissociating functional groups are bonded to each other through connecting groups. The polymer is less water-soluble and more chemically stable than a derivative composed solely of carbon clusters; therefore, it permits many ion dissociating functional group to be introduced thereinto. Moreover, if ion dissociating functional groups are introduced into also the connecting group, it is possible to prevent the concentration of ion dissociating functional groups from decreasing as the result of polymerization. The polymer can be easily synthesized by simple condensation, substitution, and hydrolysis.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: August 10, 2010
    Assignee: Sony Corporation
    Inventors: Koichiro Hinokuma, Bjoern Pietzak, Constance Gertrud Rost, Masafumi Ata, Yongming Li, Kazuaki Fukushima
  • Patent number: 7651803
    Abstract: Disclosed herein are an ionic conductor including a proton conductor, a process for production thereof, and an electrochemical device (such as fuel cell) with said ionic conductor, said ionic conductor being superior in ionic conductivity, water resistance, and film forming properties. The ionic conductor is formed from a polymer in which carbon clusters having ion dissociating functional groups are bonded to each other through connecting groups. The polymer is less water-soluble and more chemically stable than a derivative composed solely of carbon clusters; therefore, it permits many ion dissociating functional group to be introduced thereinto. Moreover, if ion dissociating functional groups are introduced into also the connecting group, it is possible to prevent the concentration of ion dissociating functional groups from decreasing as the result of polymerization. The polymer can be easily synthesized by simple condensation, substitution, and hydrolysis.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: January 26, 2010
    Assignee: Sony Corporation
    Inventors: Koichiro Hinokuma, Bjoern Pietzak, Constance Gertrud Rost, Masafumi Ata, Yongming Li, Kazuaki Fukushima
  • Patent number: 7578990
    Abstract: A proton conductor, a method for manufacturing the same, and an electrochemical device using the proton conductor are provided. The proton conductor includes a carbon derivative which has a carbon material selected from the group consisting of a fullerene molecule, a cluster consisting essentially of carbon, a fiber-shaped carbon anPlease do not hesitate to contact us with any questions d a tube-regarding this matter shaped carbon, and mixtures thereof, and at least a proton dissociative group, the proton dissociative group being bonded to the carbon material via a cyclic structure of tricyclic or more. The method includes the steps of obtaining the carbon derivative, hydrolyzing the derivative with alkali hydroxide, subjecting the hydrolyzed product to ion exchange, and forming a group with proton-dissociating properties.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: August 25, 2009
    Assignee: Sony Corporation
    Inventors: Yong Ming Li, Koichiro Hinokuma
  • Patent number: 7524916
    Abstract: Hybrid silica polymer applicable to electrochemical elements and a method for economical production thereof, the former excelling in thermal stability, mechanical stability, solvent resistance, and proton conductivity at low humidity is provided. The method includes a step of heating a mixture of 3-mercaptopropyltrialkoxylsilane, surfactant, water, and base or acid for their reaction with one another at 25 to 180° C., thereby providing a hybrid thiol group-containing silica polymer, and an optional step of oxidizing said hybrid thiol group-containing silica polymer with a peroxide, thereby giving a hybrid silica polymer which is composed of hybrid (thiol group-containing and/or sulfonic group-containing) silica polymer. The resulting silica polymer is used as a proton conducting material for electrochemical elements such as fuel cells, capacitors, and electrolytic cells.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: April 28, 2009
    Assignee: Sony Corporation
    Inventors: Nawal Kishor Mal, Koichiro Hinokuma, Kazuhiro Noda
  • Publication number: 20090105357
    Abstract: Disclosed herein are an ionic conductor including a proton conductor, a process for production thereof, and an electrochemical device (such as fuel cell) with said ionic conductor, said ionic conductor being superior in ionic conductivity, water resistance, and film forming properties. The ionic conductor is formed from a polymer in which carbon clusters having ion dissociating functional groups are bonded to each other through connecting groups. The polymer is less water-soluble and more chemically stable than a derivative composed solely of carbon clusters; therefore, it permits many ion dissociating functional group to be introduced thereinto. Moreover, if ion dissociating functional groups are introduced into also the connecting group, it is possible to prevent the concentration of ion dissociating functional groups from decreasing as the result of polymerization. The polymer can be easily synthesized by simple condensation, substitution, and hydrolysis.
    Type: Application
    Filed: December 19, 2008
    Publication date: April 23, 2009
    Applicant: SONY CORPORATION
    Inventors: Koichiro Hinokuma, Bjoern Pietzak, Constance Gertrud Rost, Masafumi Ata, Yongming Li, Kazuaki Fukushima
  • Publication number: 20090004525
    Abstract: Disclosed herein are an ion-dissociative functional compound, a method for production thereof, an ionic conductor, and an electrochemical device, the ion-dissociative functional compound being thermally and chemically stable under the condition required of fuel cells and being suitable for use as a material such as protonic conductor in fuel cells. The proton-dissociative functional compound shown in FIG. 1A is composed of a fullerene C60 molecule and about 10 sulfonic acid groups —SO3H as proton-dissociative groups each attached to the fullerene through a difluoromethane group —CF2—. The proton-dissociative functional compound shown in FIG. 1B is composed of fullerene molecules three-dimensionally connected to each other through a linking group —CF2SO2NHSO2CF2—. It contains, as the proton-dissociative group, sulfoneimide groups —SO2NHSO2— and sulfoneamide groups —SO2H2 in addition to sulfonic acid groups.
    Type: Application
    Filed: August 4, 2004
    Publication date: January 1, 2009
    Inventors: Kazuaki Fukushima, Shuichi Takizawa, Koichiro Hinokuma, Atsushi Nishimoto, Kazuhiro Noda
  • Publication number: 20070213494
    Abstract: Disclosed herein are a hybrid silica polymer applicable to electrochemical elements and a method for economical production thereof, the former excelling in thermal stability, mechanical stability, solvent resistance, and proton conductivity at low humidity. Said method includes a step of heating a mixture of 3-mercaptopropyltrialkoxylsilane, surfactant, water, and base or acid for their reaction with one another at 25 to 180° C., thereby giving a hybrid thiol group-containing silica polymer, and an optional step of oxidizing said hybrid thiol group-containing silica polymer with a peroxide, thereby giving a hybrid silica polymer which is composed of hybrid (thiol group-containing and/or sulfonic group-containing) silica polymer. The resulting silica polymer is used as a proton conducting material for electrochemical elements such as fuel cells, capacitors, and electrolytic cells.
    Type: Application
    Filed: April 8, 2005
    Publication date: September 13, 2007
    Applicant: Sony Corporation
    Inventors: Nawal Mal, Koichiro Hinokuma, Kazuhiro Noda
  • Publication number: 20070092800
    Abstract: Disclosed herein are an ionic conductor including a proton conductor, a process for production thereof, and an electrochemical device (such as fuel cell) with said ionic conductor, said ionic conductor being superior in ionic conductivity, water resistance, and film forming properties. The ionic conductor is formed from a polymer in which carbon clusters having ion dissociating functional groups are bonded to each other through connecting groups. The polymer is less water-soluble and more chemically stable than a derivative composed solely of carbon clusters; therefore, it permits many ion dissociating functional group to be introduced thereinto. Moreover, if ion dissociating functional groups are introduced into also the connecting group, it is possible to prevent the concentration of ion dissociating functional groups from decreasing as the result of polymerization. The polymer can be easily synthesized by simple condensation, substitution, and hydrolysis.
    Type: Application
    Filed: November 20, 2006
    Publication date: April 26, 2007
    Applicant: Sony Corporation
    Inventors: Koichiro Hinokuma, Bjoern Pietzak, Constance Rost, Masafumi Ata, Yongming Li, Kazuaki Fukushima
  • Publication number: 20070015028
    Abstract: A proton conductor, a method for manufacturing the same, and an electrochemical device using the proton conductor are provided. The proton conductor includes a carbon derivative which has a carbon material selected from the group consisting of a fullerene molecule, a cluster consisting essentially of carbon, a fiber-shaped carbon anPlease do not hesitate to contact us with any questions d a tube-regarding this matter shaped carbon, and mixtures thereof, and at least a proton dissociative group, the proton dissociative group being bonded to the carbon material via a cyclic structure of tricyclic or more. The method includes the steps of obtaining the carbon derivative, hydrolyzing the derivative with alkali hydroxide, subjecting the hydrolyzed product to ion exchange, and forming a group with proton-dissociating properties.
    Type: Application
    Filed: September 20, 2006
    Publication date: January 18, 2007
    Applicant: SONY CORPORATION
    Inventors: Yong Li, Koichiro Hinokuma
  • Patent number: 7157183
    Abstract: A proton conductor mainly contains a carbonaceous material derivative, such as, a fullerene derivative, a carbon cluster derivative, or a tubular carbonaceous material derivative in which groups capable of transferring protons, for example, —OH groups or —OSO3H groups are introduced to carbon atoms of the carbonaceous material derivative. The proton conductor is produced typically by compacting a powder of the carbonaceous material derivative. The proton conductor is usable, even in a dry state, in a wide temperature range including ordinary temperature. In particular, the proton conductor mainly containing the carbon cluster derivative is advantageous in increasing the strength and extending the selection range of raw materials. An electrochemical device, such as, a fuel cell, that employs the proton conductor is not limited by atmospheric conditions and can be of a small and simple construction.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: January 2, 2007
    Assignee: Sony Corporation
    Inventors: Koichiro Hinokuma, Björn Pietzak, Constance Gertrud Rost, Masafumi Ata
  • Patent number: 7153608
    Abstract: An ionic conductor, such as a proton conductor, a process for production thereof, and an electrochemical device, such as fuel cell, that includes the ionic conductor is provided. The ionic conductor of the present invention is formed from a polymer in which carbon clusters having ion dissociating functional groups are bonded to each other through connecting groups which can also include one or more ion dissociating functional groups. In this regard, the polymer is less water-soluble and more chemically stable than a derivative composed solely of carbon clusters, thus displaying enhanced ionic conduction properties.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: December 26, 2006
    Assignee: Sony Corporation
    Inventors: Koichiro Hinokuma, Bjoern Pietzak, Constance Gertrud Rost, Masafumi Ata, Yongming Li, Kazuaki Fukushima