Patents by Inventor Koichiro Kezuka

Koichiro Kezuka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020076617
    Abstract: To provide a battery capable of obtaining an excellent electrolyte and improved characteristics. The battery has a battery device where a positive electrode and a negative electrode are laminated with a separator in-between inside a package member. The electrolyte containing a polymer compound synthesized by polymerizing a monomer is impregnated in the separator. The synthesis of the polymer compound is inhibited by existence of Cu, thereby a negative electrode collector layer consists of foil including a metal (e.g., Ni, Cr, Au), which is not copper and does not form an alloy with lithium, or Cu foil covering the above metal. Therefore, even if the polymer compound is synthesized after fabricating the battery, polymerization can smoothly progress and content of a remained monomer can be reduced. This can prevent deterioration of battery characteristics because decomposition or reaction of the monomer is controlled even if charge and discharge are repeatedly conducted.
    Type: Application
    Filed: July 2, 2001
    Publication date: June 20, 2002
    Inventors: Koichiro Kezuka, Takahiro Endo
  • Publication number: 20020071987
    Abstract: A battery electrode that can be bent in any shape without deterioration in battery performance. The metal current collector of the battery electrode has cut lines. This battery electrode is used for the positive or negative electrode of a non-aqueous electrolyte battery. The length of the cut lines is such that the ratio of y/x is from 0.2 to 0.9, with y being the total length of cut lines, and x being the distance between two points at which the extension of the cut line crosses both edges of the current collector.
    Type: Application
    Filed: March 22, 2001
    Publication date: June 13, 2002
    Inventors: Koichiro Kezuka, Takahiro Endo
  • Patent number: 6395428
    Abstract: A gel electrolyte and gel-electrolyte battery. The gel electrolyte and gel-electrolyte battery have an improved cycle characteristic and preservation easiness at high temperatures. The gel-electrolyte battery incorporates a positive-electrode mix layer, a negative-electrode mix layer and a gel-electrolyte layer. The gel-electrolyte layer contains a plasticizer which contains lithium salt, a matrix polymer for dispersing the plasticizer and fibrous insolubles. The fibrous insolubles are contained in the gel electrolyte in a quantity not less than 0.1 wt % nor more than 50 wt %. The ratio of the length and diameter of the fibrous insolubles is not less than 10 nor more than 3000. The length of the fibrous insolubles is not less than 10 &mgr;nor more than 1 cm and the diameter of the fibrous insolubles is not less than 0.05 &mgr;m nor more than 50 &mgr;m.
    Type: Grant
    Filed: November 23, 1999
    Date of Patent: May 28, 2002
    Assignee: Sony Corporation
    Inventor: Koichiro Kezuka
  • Publication number: 20020031710
    Abstract: Disclosed is an electrolyte capable of obtaining an excellent quality of electrolyte, and a battery using the electrolyte. A battery device in which a positive electrode and a negative electrode are stacked with a separator being interposed therebetween is enclosed inside an exterior member. The separator is impregnated with an electrolyte. The electrolyte contains a high polymer, a plasticizer, a lithium and at least either carboxylic acid or carboxylate. Therefore, when preparing a high polymer by means of polymerization of monomers, the polymerization of monomers can be smoothly processed even if there is a factor for inhibiting reaction such as copper. As a result, the amount of non-reacted monomers remained in the electrolyte can be suppressed to be extremely small. Therefore, decomposition and reaction of monomers are suppressed even after repeating charging/discharging, so that the deterioration in the charging/discharging efficiency and the charging/discharging characteristic can be prevented.
    Type: Application
    Filed: May 22, 2001
    Publication date: March 14, 2002
    Inventors: Koichiro Kezuka, Takahiro Endo
  • Patent number: 6355378
    Abstract: A solid electrolyte cell in which the state of electrical contact between the solid electrolyte and the layers of active materials of the positive and negative electrodes and the inter-particulate distance in the layers of active materials of the positive and negative electrodes can be optimized to assure superior load characteristics, and a method for manufacturing the cell. The method for manufacturing a solid electrolyte cell includes a step of applying a paint containing an active material and a binder to a current collector to form a layer of an active material, and a step of impregnating a solid electrolyte in the layer of the active material formed by the active material layer forming step. The impregnating step includes applying the paint comprised of the solid electrolyte dissolved in a solvent on the layer of the active material to allow the paint to be permeated into the layer of the active material, and subsequently drying the solvent.
    Type: Grant
    Filed: October 28, 1998
    Date of Patent: March 12, 2002
    Assignee: Sony Corporation
    Inventor: Koichiro Kezuka
  • Publication number: 20020009636
    Abstract: Disclosed is a solid electrolyte battery including: a first electrode including a first collector, and a first active material layer formed on one surface of the first collector with an outer peripheral edge portion of the first collector remaining as a collector exposed portion; a second electrode including a second collector and second active material layers formed on both surfaces of the second collector; and a solid electrolyte interposed between the first electrode and the second electrode; wherein the second electrode is held in the first electrode in such a manner that the first active material layer is opposed to each of the second active material layers via the solid electrolyte, and is sealed in the first electrode by joining the collector exposed portion of the first electrode to each other. This battery is allowed to be further thinned and reduced in weight, to be improved in energy density per weight and energy density per volume, and to be enhanced in air-tightness.
    Type: Application
    Filed: March 9, 2001
    Publication date: January 24, 2002
    Inventors: Takahiro Endo, Koichiro Kezuka, Tsuyonobu Hatazawa
  • Publication number: 20010019797
    Abstract: An electrode for a battery includes an electrode sheet, a lead, and a metal piece. The electrode sheet has a collector, an active material layer formed on the collector, and a lead connecting portion which is configured as an exposed extension of the collector, on both surfaces of which the active material layer is not formed. The lead connecting portion, the lead, and the metal piece are overlapped to and joined to each other. With this configuration, even if a contact area between the lead connecting portion and the lead is small, an electric resistance at the joined portion between the lead connecting portion and the lead becomes small, with a result that it is possible to enhance the strength of the joined portion and to enhance the discharge load characteristic of the battery.
    Type: Application
    Filed: February 23, 2001
    Publication date: September 6, 2001
    Inventors: Koichiro Kezuka, Takahiro Endo
  • Publication number: 20010016290
    Abstract: A solid electrolyte cell in which the state of electrical contact between the solid electrolyte and the layers of active materials of the positive and negative electrodes and the inter-particulate distance in the layers of active materials of the positive and negative electrodes can be optimized to assure superior load characteristics, and a method for manufacturing the cell. The method for manufacturing a solid electrolyte cell includes a step of applying a paint containing an active material and a binder to a current collector to form a layer of an active material, and a step of impregnating a solid electrolyte in the layer of the active material formed by the active material layer forming step. The impregnating step includes applying the paint comprised of the solid electrolyte dissolved in a solvent on the layer of the active material to allow the paint to be permeated into the layer of the active material, and subsequently drying the solvent.
    Type: Application
    Filed: October 28, 1998
    Publication date: August 23, 2001
    Inventor: KOICHIRO KEZUKA