Patents by Inventor Koji Ashida

Koji Ashida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240082413
    Abstract: As an antitumor drug which is excellent in terms of antitumor effect and safety, there is provided an antibody-drug conjugate in which an antitumor compound represented by the following formula is conjugated to an antibody via a linker having a structure represented by the following formula: -L1-L2-LP-NH—(CH2)n1-La-Lb-Lc- wherein the antibody is connected to the terminal of L1, and the antitumor compound is connected to the terminal of Lc with the nitrogen atom of the amino group at position 1 as a connecting position.
    Type: Application
    Filed: March 3, 2023
    Publication date: March 14, 2024
    Applicant: DAIICHI SANKYO COMPANY, LIMITED
    Inventors: Takeshi MASUDA, Hiroyuki NAITO, Takashi NAKADA, Masao YOSHIDA, Shinji ASHIDA, Hideki MIYAZAKI, Yuji KASUYA, Koji MORITA, Yuki ABE, Yusuke OGITANI
  • Publication number: 20240044042
    Abstract: Disclosed is a method for using a SiC container (3) in which Si vapor and C vapor are generated in the internal space during the heat treatment. The SiC container may be heated in Si atmosphere to grow an epitaxial layer of single crystalline SiC on the underlying substrate housed in the internal space. The SiC container may be heated in a TaC container of a material including TaC supplemented with a source of Si to grow an epitaxial layer of single crystalline SiC on the underlying substrate housed in the internal space.
    Type: Application
    Filed: October 17, 2023
    Publication date: February 8, 2024
    Applicants: KWANSEI GAKUIN EDUCATIONAL FOUNDATION, TOYOTA TSUSHO CORPORATION
    Inventors: Tadaaki Kaneko, Yasunori Kutsuma, Koji Ashida, Ryo Hashimoto
  • Publication number: 20220259760
    Abstract: A manufacturing device of SiC semiconductor substrates includes a SiC container (3) in which Si vapor and C vapor are generated in the internal space during the heat treatment, and a high-temperature vacuum furnace (11) capable of heating the SiC container in Si atmosphere. The device can further be configured such that the SiC container is housed in Si atmosphere and an underlying substrate (40) is housed in the SiC container, and the high-temperature vacuum furnace is capable of heating with a temperature gradient.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Applicants: KWANSEI GAKUIN EDUCATIONAL FOUNDATION, TOYOTA TSUSHO CORPORATION
    Inventors: Tadaaki Kaneko, Yasunori Kutsuma, Koji Ashida, Ryo Hashimoto
  • Publication number: 20220259759
    Abstract: Disclosed is a SiC container (3) in which Si vapor and C vapor are generated in the internal space during the heat treatment. The SiC container may be heated in Si atmosphere to grow an epitaxial layer of single crystalline SiC on the underlying substrate housed in the internal space. The SiC container may be heated in a TaC container of a material including TaC supplemented with a source of Si to grow an epitaxial layer of single crystalline SiC on the underlying substrate housed in the internal space.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Applicants: KWANSEI GAKUIN EDUCATIONAL FOUNDATION, TOYOTA TSUSHO CORPORATION
    Inventors: Tadaaki Kaneko, Yasunori Kutsuma, Koji Ashida, Ryo Hashimoto
  • Publication number: 20220216116
    Abstract: To provide a new temperature distribution evaluation method, a temperature distribution evaluation device, and a soaking range evaluation method, as the temperature distribution evaluation method which evaluates a temperature distribution of a heating area 40A provided in a heating device 40, the present invention is a temperature distribution evaluation method which, in the heating area 40A, heats a semiconductor substrate 10 and a transmitting and receiving body 20 for transporting a raw material to and from the semiconductor substrate 10, and evaluates a temperature distribution of the heating area 40A on the basis of a substrate thickness variation amount A of the semiconductor substrate 10. Accordingly, temperature distribution evaluation can be implemented for a high temperature area at 1600-2200° C. or the like at which it is hard to evaluate the temperature distribution due to the limit of a thermocouple material.
    Type: Application
    Filed: April 24, 2020
    Publication date: July 7, 2022
    Inventors: Tadaaki KANEKO, Daichi DOJIMA, Koji ASHIDA, Tomoya IHARA
  • Patent number: 11359307
    Abstract: In a state in which a SiC container (3) of a material including polycrystalline SiC is housed in a TaC container (2) of a material including TaC and in which an underlying substrate (40) is housed in the SiC container (3), the TaC container (2) is heated in an environment where a temperature gradient occurs in such a manner that inside of the TaC container (2) is at a Si vapor pressure. Consequently, C atoms sublimated by etching of the inner surface of the SiC container (3) are bonded to Si atoms in an atmosphere so that an epitaxial layer (41) of single crystalline 3C-SiC thereby grows on the underlying substrate (40).
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: June 14, 2022
    Assignees: KWANSEI GAKUIN EDUCATIONAL FOUNDATION, TOYOTA TSUSHO CORPORATION
    Inventors: Tadaaki Kaneko, Yasunori Kutsuma, Koji Ashida, Ryo Hashimoto
  • Publication number: 20210398807
    Abstract: An object of the present invention is to provide a SiC semiconductor substrate capable of reducing a density of basal plane dislocations (BPD) in a growth layer, a manufacturing method thereof, and a manufacturing device thereof. The method includes: a strained layer removal process S10 that removes a strained layer introduced on a surface of a SiC substrate; and an epitaxial growth process S20 that conducts growth under a condition that a terrace width W of the SiC substrate is increased. When a SiC semiconductor substrate is manufactured in such processes, the basal plane dislocations BPD in the growth layer can be reduced, and a yield of a SiC semiconductor device can be improved.
    Type: Application
    Filed: November 5, 2019
    Publication date: December 23, 2021
    Inventors: Tadaaki KANEKO, Koji ASHIDA, Tomoya IHARA, Daichi DOJIMA
  • Publication number: 20210399095
    Abstract: An object of the present invention is to provide a SiC semiconductor substrate having a growth layer with a controlled step height, a manufacturing method thereof, and a manufacturing device thereof. The method includes: a growth process that grows a SiC substrate 10 in a SiC—Si equilibrium vapor pressure environment. In this way, when the SiC substrate 10 is grown in the SiC—Si equilibrium vapor pressure environment, it is possible to provide a SiC semiconductor substrate in which the step height of the growth layer is controlled.
    Type: Application
    Filed: November 5, 2019
    Publication date: December 23, 2021
    Inventors: Tadaaki KANEKO, Koji ASHIDA, Tomoya IHARA, Daichi DOJIMA
  • Patent number: 10847342
    Abstract: A reference sample (41) has a step/terrace structure made of monocrystalline SiC and a surface of each terrace has first or second stack orientation. In the reference sample (41), contrast as difference in lightness and darkness between an image of a terrace with a surface directly under which the first stack orientation lies and an image of a terrace with a surface directly under which the second stack orientation lies changes according to an incident electron angle which is an angle that an electron beam emitted from a scanning electron microscope forms with a perpendicular to the terrace surface. Even when a SiC substrate has an off angle (e.g., from 1° to 8°), using an inclined support base (20a) capable of correcting the off angle enables sharp contrast that reflects difference between the first and second stack orientations directly under the surface to be obtained irrespective of the off angle.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: November 24, 2020
    Assignee: KWANSEI GAKUIN EDUCATIONAL FOUNDATION
    Inventors: Tadaaki Kaneko, Koji Ashida
  • Publication number: 20200279716
    Abstract: A reference sample (41) has a step/terrace structure made of monocrystalline SiC and a surface of each terrace has first or second stack orientation. In the reference sample (41), contrast as difference in lightness and darkness between an image of a terrace with a surface directly under which the first stack orientation lies and an image of a terrace with a surface directly under which the second stack orientation lies changes according to an incident electron angle which is an angle that an electron beam emitted from a scanning electron microscope forms with a perpendicular to the terrace surface. Even when a SiC substrate has an off angle (e.g., from 1° to 8°), using an inclined support base (20a) capable of correcting the off angle enables sharp contrast that reflects difference between the first and second stack orientations directly under the surface to be obtained irrespective of the off angle.
    Type: Application
    Filed: May 20, 2020
    Publication date: September 3, 2020
    Applicant: KWANSEI GAKUIN EDUCATIONAL FOUNDATION
    Inventors: Tadaaki Kaneko, Koji Ashida
  • Patent number: 10699873
    Abstract: A reference sample (41) has a step/terrace structure made of monocrystalline SiC and a surface of each terrace has first or second stack orientation. In the reference sample (41), contrast as difference in lightness and darkness between an image of a terrace with a surface directly under which the first stack orientation lies and an image of a terrace with a surface directly under which the second stack orientation lies changes according to an incident electron angle which is an angle that an electron beam emitted from a scanning electron microscope forms with a perpendicular to the terrace surface. Even when a SiC substrate has an off angle (e.g., from 1° to 8°), using an inclined support base (20a) capable of correcting the off angle enables sharp contrast that reflects difference between the first and second stack orientations directly under the surface to be obtained irrespective of the off angle.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: June 30, 2020
    Assignee: KWANSEI GAKUIN EDUCATIONAL FOUNDATION
    Inventors: Tadaaki Kaneko, Koji Ashida
  • Patent number: 10685680
    Abstract: A method includes grouping media items associated with a user into segments based on a timestamp associated with each media item and a total number of media items. The method also includes selecting target media from the media items for each of the segments based on media attributes associated with the media item. The method also includes generating a video that includes the target media for each of the segments by generating a first animation that illustrates a first transition from a first item from the target media to a second item from the target media with movement of the first item from an onscreen location to an offscreen location, wherein the first item is adjacent to the second item in the first animation and determining whether the target media includes one or more additional items. The method also includes adding a song to the video.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: June 16, 2020
    Assignee: Google LLC
    Inventors: Shengyang Dai, Timothy Sepkoski St. Clair, Koji Ashida, Jingyu Cui, Jay Steele, Qi Gu, Erik Murphy-Chutorian, Ivan Neulander, Flavio Lerda, Eric Charles Henry, Shinko Yuanhsien Cheng, Aravind Krishnaswamy, David Cohen, Pardis Beikzadeh
  • Patent number: 10665465
    Abstract: Provided is a surface treatment method for a SiC substrate (40), the method being capable of controlling whether to generate a step bunching or the type of step bunching that is generated. In the surface treatment method in which the surface of the SiC substrate (40) is etched by heating the SiC substrate (40) under Si vapor pressure, an etching mode and an etching depth which are determined at least on the basis of an etching rate, are controlled to etch the SiC substrate (40), so that a surface pattern of the SiC substrate (40) after etching treatment is controlled.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: May 26, 2020
    Assignees: KWANSEI GAKUIN EDUCATIONAL FOUNDATION, TOYO TANSO CO., LTD.
    Inventors: Tadaaki Kaneko, Koji Ashida, Yasunori Kutsuma, Satoshi Torimi, Masato Shinohara, Youji Teramoto, Norihito Yabuki, Satoru Nogami
  • Patent number: 10508361
    Abstract: In a first step, protrusions (42) are formed on a surface of an SiC substrate (40), and the SiC substrate (40) is etched. In a second step, the protrusions (42) of the SiC substrate (40) are epitaxially grown through MSE process, and an epitaxial layer (43a) containing threading screw dislocation, which has been largely grown in the vertical (c-axis) direction as a result of MSE process, is at least partially removed. In a third step, MSE process is performed again on the SiC substrate (40) after the second step, to cause epitaxial layers (43) containing no threading screw dislocation to be grown in the horizontal (a-axis) direction to be connected at the molecular level, so that one monocrystalline 4H—SiC semiconductor wafer (45) having a large area is generated throughout an Si-face or a C-face of the SiC substrate (40).
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: December 17, 2019
    Assignee: KWANSEI GAKUIN EDUCATIONAL FOUNDATION
    Inventors: Tadaaki Kaneko, Yasunori Kutsuma, Koji Ashida
  • Patent number: 10388536
    Abstract: Provided is a method for controlling the rate of etching of a SiC substrate based on a composition of a storing container. The etching method of the present invention is for etching the SiC substrate by heating the SiC substrate under Si vapor pressure, in a state where the SiC substrate is stored in a crucible. The crucible is formed of a tantalum metal, and has a tantalum carbide layer provided on an internal space side of the tantalum metal, and a tantalum silicide layer provided on the side further toward the internal space side than the tantalum carbide layer. The rate of etching of the SiC substrate is controlled based on difference in a composition of the tantalum silicide layer.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: August 20, 2019
    Assignees: TOYO TANSO CO., LTD., KWANSEI GAKUIN EDUCATIONAL FOUNDATION
    Inventors: Satoshi Torimi, Masato Shinohara, Youji Teramoto, Norihito Yabuki, Satoru Nogami, Tadaaki Kaneko, Koji Ashida, Yasunori Kutsuma
  • Publication number: 20190252001
    Abstract: A method includes grouping media items associated with a user into segments based on a timestamp associated with each media item and a total number of media items. The method also includes selecting target media from the media items for each of the segments based on media attributes associated with the media item. The method also includes generating a video that includes the target media for each of the segments by generating a first animation that illustrates a first transition from a first item from the target media to a second item from the target media with movement of the first item from an onscreen location to an offscreen location, wherein the first item is adjacent to the second item in the first animation and determining whether the target media includes one or more additional items. The method also includes adding a song to the video.
    Type: Application
    Filed: March 20, 2019
    Publication date: August 15, 2019
    Applicant: Google LLC
    Inventors: Shengyang DAI, Timothy Sepkoski ST. CLAIR, Koji ASHIDA, Jingyu CUI, Jay STEELE, Qi GU, Erik MURPHY-CHUTORIAN, Ivan NEULANDER, Flavio LERDA, Eric Charles HENRY, Shinko Yuanhsien CHENG, Aravind KRISHNASWAMY, David COHEN, Pardis BEIKZADEH
  • Publication number: 20190148107
    Abstract: A reference sample (41) has a step/terrace structure made of monocrystalline SiC and a surface of each terrace has first or second stack orientation. In the reference sample (41), contrast as difference in lightness and darkness between an image of a terrace with a surface directly under which the first stack orientation lies and an image of a terrace with a surface directly under which the second stack orientation lies changes according to an incident electron angle which is an angle that an electron beam emitted from a scanning electron microscope forms with a perpendicular to the terrace surface. Even when a SiC substrate has an off angle (e.g., from 1° to 8°), using an inclined support base (20a) capable of correcting the off angle enables sharp contrast that reflects difference between the first and second stack orientations directly under the surface to be obtained irrespective of the off angle.
    Type: Application
    Filed: April 27, 2017
    Publication date: May 16, 2019
    Applicant: KWANSEI GAKUIN EDUCATIONAL FOUNDATION
    Inventors: Tadaaki Kaneko, Koji Ashida
  • Publication number: 20190136409
    Abstract: In a state in which a SiC container (3) of a material including polycrystalline SiC is housed in a TaC container (2) of a material including TaC and in which an underlying substrate (40) is housed in the SiC container (3), the TaC container (2) is heated in an environment where a temperature gradient occurs in such a manner that inside of the TaC container (2) is at a Si vapor pressure. Consequently, C atoms sublimated by etching of the inner surface of the SiC container (3) are bonded to Si atoms in an atmosphere so that an epitaxial layer (41) of single crystalline 3C-SiC thereby grows on the underlying substrate (40).
    Type: Application
    Filed: April 27, 2017
    Publication date: May 9, 2019
    Applicant: KWANSEI GAKUIN EDUCATIONAL FOUNDATION
    Inventors: Tadaaki Kaneko, Yasunori Kutsuma, Koji Ashida, Ryo Hashimoto
  • Patent number: 10242711
    Abstract: A method includes grouping media items associated with a user into segments based on a timestamp associated with each media item and a total number of media items. The method also includes selecting target media from the media items for each of the segments based on media attributes associated with the media item. The method also includes generating a video that includes the target media for each of the segments by generating a first animation that illustrates a first transition from a first item from the target media to a second item from the target media with movement of the first item from an onscreen location to an offscreen location, wherein the first item is adjacent to the second item in the first animation and determining whether the target media includes one or more additional items. The method also includes adding a song to the video.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: March 26, 2019
    Assignee: Google LLC
    Inventors: Shengyang Dai, Timothy Sepkoski St. Clair, Koji Ashida, Jingyu Cui, Jay Steele, Qi Gu, Erik Murphy-Chutorian, Ivan Neulander, Flavio Lerda, Eric Charles Henry, Shinko Yuanhsien Cheng, Aravind Krishnaswamy, David Cohen, Pardis Beikzadeh
  • Publication number: 20180312992
    Abstract: In a first step, protrusions (42) are formed on a surface of an SiC substrate (40), and the SiC substrate (40) is etched. In a second step, the protrusions (42) of the SiC substrate (40) are epitaxially grown through MSE process, and an epitaxial layer (43a) containing threading screw dislocation, which has been largely grown in the vertical (c-axis) direction as a result of MSE process, is at least partially removed. In a third step, MSE process is performed again on the SiC substrate (40) after the second step, to cause epitaxial layers (43) containing no threading screw dislocation to be grown in the horizontal (a-axis) direction to be connected at the molecular level, so that one monocrystalline 4H—SiC semiconductor wafer (45) having a large area is generated throughout an Si-face or a C-face of the SiC substrate (40).
    Type: Application
    Filed: November 8, 2016
    Publication date: November 1, 2018
    Applicant: KWANSEI GAKUIN EDUCATIONAL FOUNDATION
    Inventors: Tadaaki Kaneko, Yasunori Kutsuma, Koji Ashida