Patents by Inventor Koji Hoshino

Koji Hoshino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7273673
    Abstract: A solid electrolyte type fuel cell which incorporates a metal separator comprising a base material of a metal other than silver or a silver alloy which is plated with silver or a silver alloy. The fuel cell can achieve improved efficiency for electricity generation with no increase of the resistance of the metal separator, even when it is operated at a low temperature.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: September 25, 2007
    Assignee: Mitsubishi Materials Corporation
    Inventors: Jun Akikusa, Koji Hoshino
  • Publication number: 20070166593
    Abstract: A solid oxide fuel cell provided with a power cell (1) in which a fuel electrode layer (4) is arranged on one surface of a solid electrolyte layer (3) and an air electrode layer (2) is arranged on the other surface thereof, wherein the solid electrolyte layer (3) has a two layer structure including a first electrolyte layer (3a) made of a ceria based oxide material and a second electrolyte layer (3b) made of a lanthanum gallate based oxide material, and the second electrolyte layer is formed on the side of the air electrode layer. It is preferable that the first electrolyte layer is formed thinner than the second electrolyte layer. According to such a configuration, there can be provided a solid oxide fuel cell comprising an inexpensive solid electrolyte layer which reduces the contact resistances in the interfaces between the solid electrolyte layer and the respective electrode layers, and thereby improves the generation efficiency.
    Type: Application
    Filed: March 12, 2007
    Publication date: July 19, 2007
    Inventors: Koji Hoshino, Kei Hosoi, Takashi Yamada, Jun Akikusa
  • Publication number: 20070160892
    Abstract: Gas discharge ports are provided in almost the entire area of a layer surface of a separator, and a gas for reaction is discharged like a shower from the separator toward a power generation cell. The separator is constructed by layering plate-shaped members containing iron-base alloy, nickel-base alloy, or chrome-base alloy as the base material. Silver, silver alloy, copper, or copper alloy is plated on both sides or one side of the base material of the plate-shaped member. The construction above can increase durability of a separator and enables the separator and a solid oxide fuel cell to be stably used for a long period.
    Type: Application
    Filed: January 13, 2005
    Publication date: July 12, 2007
    Inventors: Takashi Yamada, Masaharu Yamada, Taner Akbay, Koji Hoshino, Takashi Miyazawa, Takafumi Kotani, Norikazu Komada
  • Publication number: 20070092775
    Abstract: A solid oxide fuel cell is formed by arranging a fuel electrode layer and an air electrode layer on both surfaces of a solid electrolyte, respectively, a fuel electrode current collector and an air electrode current collector outside the fuel electrode layer and the air electrode layer, respectively, and separators outside the fuel electrode current collector and the air electrode current collector. In a first embodiment, a fuel gas and an oxidant gas are supplied from the separators to the fuel electrode layer and the oxidant electrode layer, respectively, through the fuel electrode current collector and the air electrode current collector, respectively. Each separator is formed by laminating a plurality of thin metal plates at least including a thin metal plate in which a first gas discharge opening is arranged in a central part and second gas discharge openings are circularly arranged in a peripheral part, and a thin metal plate with an indented surface.
    Type: Application
    Filed: December 6, 2006
    Publication date: April 26, 2007
    Inventors: Norikazu Komada, Koji Hoshino, Jun Akikusa, Kei Hosoi
  • Patent number: 7201991
    Abstract: A solid oxide fuel cell is formed by arranging a fuel electrode layer and an air electrode layer on both surfaces of a solid electrolyte, respectively, a fuel electrode current collector and an air electrode current collector outside the fuel electrode layer and the air electrode layer, respectively, and separators outside the fuel electrode current collector and the air electrode current collector. In a first embodiment, a fuel gas and an oxidant gas are supplied from the separators to the fuel electrode layer and the oxidant electrode layer, respectively, through the fuel electrode current collector and the air electrode current collector, respectively. Each separator is formed by laminating a plurality of thin metal plates at least including a thin metal plate in which a first gas discharge opening is arranged in a central part and second gas discharge openings are circularly arranged in a peripheral part, and a thin metal plate with an indented surface.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: April 10, 2007
    Assignees: Mitsubishi Materials Corporation, The Kansai Electric Power Co., Ltd.
    Inventors: Norikazu Komada, Koji Hoshino, Jun Akikusa, Kei Hosoi
  • Publication number: 20070015015
    Abstract: An object of the present invention is to provide a solid oxide fuel cell assembled with an internal reforming mechanism stable and efficient over a long period. To achieve the object, in the present invention, a fuel-electrode layer 3 and an air-electrode layer 4 are disposed on both surfaces of a solid electrolyte layer 2; a fuel-electrode-side porous metal 6 and an air-electrode-side porous metal 7 are disposed on the outer surfaces of the fuel-electrode layer 3 and the air-electrode layer 4, respectively; and a separator 8 is disposed on each of the outer surfaces of the fuel-electrode-side porous metal 6 and the air-electrode-side porous metal 7. Then, the solid oxide fuel cell is constructed by closely adhering them all. The pores 6a in the fuel-electrode-side porous metal 6 is partially or fully filled with a hydrocarbon reforming catalyst 10, and reforming reaction is driven by the reforming catalyst 10 before a fuel gas reaches the fuel-electrode layer 3.
    Type: Application
    Filed: July 12, 2005
    Publication date: January 18, 2007
    Inventors: Koji Hoshino, Norihisa Chitose, Takashi Yamada, Norikazu Komada, Kazunori Adachi, Kei Hosoi
  • Publication number: 20050221140
    Abstract: A solid oxide fuel cell provided with a power cell (1) in which a fuel electrode layer (4) is arranged on one surface of a solid electrolyte layer (3) and an air electrode layer (2) is arranged on the other surface thereof, wherein the solid electrolyte layer (3) has a two layer structure including a first electrolyte layer (3a) made of a ceria based oxide material and a second electrolyte layer (3b) made of a lanthanum gallate based oxide material, and the second electrolyte layer is formed on the side of the air electrode layer. It is preferable that the first electrolyte layer is formed thinner than the second electrolyte layer. According to such a configuration, there can be provided a solid oxide fuel cell comprising an inexpensive solid electrolyte layer which reduces the contact resistances in the interfaces between the solid electrolyte layer and the respective electrode layers, and thereby improves the generation efficiency.
    Type: Application
    Filed: March 7, 2003
    Publication date: October 6, 2005
    Inventors: Koji Hoshino, Kei Hosoi, Takashi Yamada, Jun Akikusa
  • Publication number: 20050221161
    Abstract: A solid oxide fuel cell is formed by arranging a fuel electrode layer and an air electrode layer on both surfaces of a solid electrolyte, respectively, a fuel electrode current collector and an air electrode current collector outside the fuel electrode layer and the air electrode layer, respectively, and separators (8) outside the fuel electrode current collector and the air electrode current collector. In the first embodiment, a fuel gas and an oxidant gas are supplied from the separators (8) to the fuel electrode layers and the oxidant electrode layers, respectively, through the fuel electrode current collectors and the air electrode current collectors, respectively. Each separator (8) is formed by laminating a plurality of thin metal plates at least including a thin metal plate (21) in which a first gas discharge opening (25) is arranged in the central part and second gas discharge openings (24) are circularly arranged in the peripheral part, and a thin metal plate (22) with an indented surface.
    Type: Application
    Filed: February 27, 2003
    Publication date: October 6, 2005
    Inventors: Norikazu Komada, Koji Hoshino, Jun Akikusa, Kei Hosoi
  • Publication number: 20050089749
    Abstract: An electrode of a solid oxide fuel cell has a skeleton (11) constituted of a porous sintered compact having a three dimensional network structure, the porous sintered compact being made of an oxide ion conducting material and/or a mixed oxide ion conducting material; grains (12) made of an electron conducting material and/or a mixed oxide ion conducting material are adhered onto the surface of the skeleton; and the grains are baked inside the voids (13) of the porous sintered compact under the conditions such that the grains are filled inside the voids. The electrode drastically improves the electrode properties and alleviates the thermal shock and the thermal strain to a great extent. It is preferable that the electrode is used in the form such that the electrode is formed to be integrated with the electrolyte on one surface or on both surfaces of an oxide ion conducting, dense solid electrolyte layer.
    Type: Application
    Filed: February 27, 2003
    Publication date: April 28, 2005
    Inventors: Norikazu Komada, Koji Hoshino, Kazunori Adachi, Kei Hosoi, Toru Inagaki, Hiroyuki Yoshida, Tsunehisa Sasaki
  • Publication number: 20050064277
    Abstract: An electric power generation cell 1 is constituted by arranging a fuel electrode layer 4 on one side of a solid electrolyte layer 3 and an air electrode layer 2 on the other side of the solid electrolyte layer 3. The solid electrolyte layer 3 is constituted of an oxide ion conductor mainly composed of a lanthanum gallate based oxide. The fuel electrode layer 4 is constituted of a porous sintered compact having a highly dispersed network structure in which a skeletal structure formed of a consecutive array of metal grains is surrounded by mixed conductive oxide grains. For the air electrode layer 2, a porous sintered compact mainly composed of cobaltite is used. This configuration reduces the overpotentials of the respective electrodes and the IR loss of the solid electrolyte layer 3, and accordingly can actualize a solid oxide type fuel cell excellent in electric power generation efficiency.
    Type: Application
    Filed: June 4, 2004
    Publication date: March 24, 2005
    Inventors: Toru Inagaki, Hiroyuki Yoshida, Tsunehisa Sasaki, Kazuhiro Miura, Takehisa Fukui, Satoshi Ohara, Kei Hosoi, Koji Hoshino, Kazunori Adachi
  • Publication number: 20030134174
    Abstract: A conductive and tabular separator is inserted into the gap between the fuel electrode layer of an i-th power generating cell and the oxidizer electrode layer of an (i+1)-th power generating cell adjacent to the fuel electrode layer. A fuel supply passage is so formed on one face of each of these separators that a fuel gas flows radially from almost the center of the fuel electrode layer to its edge. An oxidizer supply passage is so formed on the other face that an oxidizer gas outgoes almost uniformly in a shower toward the oxidizer polar layer. Thus, all of the surfaces of the power generating cells contribute to power generation to increase the frequency of collision between the fuel gas and the fuel electrode layer and that between the oxidizer gas and the oxidizer electrode layer, and to improve the generation efficiency.
    Type: Application
    Filed: December 5, 2002
    Publication date: July 17, 2003
    Inventors: Jun Akikusa, Koji Hoshino
  • Patent number: 6423422
    Abstract: A high strength spongy sintered metal composite sheet comprising a porous spongy sintered metal layer having continuous holes, and a high strength sintered, dense metal reinforcing layer having a porosity smaller than the porosity of the spongy sintered metal layer, laminated thereon, wherein the sintered, dense metal reinforcing layer has a thickness of 0.5-30% thickness with respect to the entire high strength spongy sintered metal composite sheet.
    Type: Grant
    Filed: April 8, 1999
    Date of Patent: July 23, 2002
    Assignee: Mitsubishi Materials Corporation
    Inventors: Masahiro Wada, Yoshitaka Mayuzumi, Koji Hoshino, Saburou Wakita
  • Publication number: 20010055694
    Abstract: A high strength spongy sintered metal composite sheet comprising a porous spongy sintered metal layer having continuous holes, and a high strength sintered, dense metal reinforcing layer having a porosity smaller than the porosity of the spongy sintered metal layer, laminated thereon, wherein the sintered, dense metal reinforcing layer has a thickness of 0.5-30% thickness with respect to the entire high strength spongy sintered metal composite sheet.
    Type: Application
    Filed: April 8, 1999
    Publication date: December 27, 2001
    Inventors: MASAHIRO WADA, YOSHITAKA MAYUZUMI, KOJI HOSHINO, SABUROU WAKITA
  • Patent number: 5698800
    Abstract: The present invention provides a mixed raw material which is capable of producing a porous metal sintered product having high porosity and fine and uniform pores. The mixed raw material for producing a porous metal sintered product is a composition including 0.05 to 10% of water-insoluble hydrocarbon organic solvent having 5 to 8 carbon atoms, 0.05 to 5% of surfactant, 0.5 to 20% of water-soluble resin binder, 5 to 80% of metallic powder having an average particle size of 0.5 to 500 .mu.m, optionally 0.1 to 40% of combustible agent for accelerating pore formation, and optionally, 0.1 to 15% of plasticizer consisting of at least one of polyhydric alcohols, oils and fats, ethers and esters, with a balance of water.
    Type: Grant
    Filed: August 2, 1996
    Date of Patent: December 16, 1997
    Assignee: Mitsubishi Materials Corporation
    Inventors: Koji Hoshino, Toru Kohno
  • Patent number: 5376328
    Abstract: There is disclosed a precious metal article which is formed of a solid-phase sintered product of a precious metal powder. For manufacturing the precious metal article, a moldable mixture which contains a precious metal powder and a binder removable by sintering is shaped into a prescribed molded object, and the molded object is then subjected to sintering. The moldable mixture is produced by preparing a precious metal powder, preparing a jellylike cellulose binder by blending a cellulose with water and leaving for a prescribed period of time, and blending the precious metal powder and the jellylike cellulose binder together. The most preferable moldable mixture contains 50 to 90% by weight of precious metal powder, 0.8 to 8% by weight of water-soluble cellulose binder, 0.08 to 3% by weight of a surface-active agent. 0.1 to 3% by weight of oil, balance water and unavoidable impurities.
    Type: Grant
    Filed: April 22, 1994
    Date of Patent: December 27, 1994
    Assignee: Mitsubishi Materials Corporation
    Inventors: Koji Hoshino, Masaki Morikawa, Tohru Kohno, Koshiro Ueda, Masaki Miyakawa
  • Patent number: 5328775
    Abstract: There is disclosed a precious metal article which is formed of a solid-phase sintered product of a precious metal powder. For manufacturing the precious metal article, a moldable mixture which contains a precious metal powder and a binder removable by sintering is shaped into a prescribed molded object, and the molded object is then subjected to sintering. The moldable mixture is produced by preparing a precious metal powder, preparing a jellylike cellulose binder by blending a cellulose with water and leaving for a prescribed period of time, and blending the precious metal powder and the jellylike cellulose binder together. The most preferable moldable mixture contains 50 to 90% by weight of precious metal powder, 0.8 to 8% by weight of water-soluble cellulose binder, 0.08 to 3% by weight of a surface-active agent. 0.1 to 3% by weight of oil, balance water and unavoidable impurities.
    Type: Grant
    Filed: November 18, 1992
    Date of Patent: July 12, 1994
    Assignee: Mitsubishi Materials Corporation
    Inventors: Koji Hoshino, Masaki Morikawa, Tohru Kohno, Koshiro Ueda, Masaki Miyakawa
  • Patent number: 4828613
    Abstract: A powdery raw material for manufacturing an anode of a fuel cell comprises a powder of a nickel-base alloy consisting essentially of 0.5-10 percent by weight aluminum, and the balance of nickel and inevitable impurities, and having a mean grain size of 3-20 microns. The nickel-base alloy powder may contain 0.01-1.0 percent by weight oxygen, and/or may have an apparent density of 0.5-3.5 g/cm.sup.3, and a specific surface area of at least 0.12 m.sup.2 /g. Advantageously, the nickel-base alloy powder is formed by means of water-atomization under a condition that the water injection pressure is 400 Kg/cm.sup.2, and the specific water quantity is 0.02-0.2 m.sup.3 /Kg, the thus manufactured anodes exhibit initial anode characteristics as excellent as those of conventional anodes, and possess such excellent high-temperature creep strength and sintering resistance, thereby exhibiting excellent anode characteristics over a long period of time.
    Type: Grant
    Filed: August 17, 1987
    Date of Patent: May 9, 1989
    Assignees: Mitsubishi Kinzoku Kabushiki Kaisha, Mitsubishi Electric Corporation
    Inventors: Koji Hoshino, Fumio Nouda, Seiro Yahata