Patents by Inventor Koji Matsuno

Koji Matsuno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020153770
    Abstract: A vehicle behavior control apparatus is divided into three major parts, sensors for detecting engine and vehicle operating conditions, a target yaw rate establishing section for establishing the rate and differential limiting apparatuses for selectively varying distribution ratios of driving force between front and rear wheels and/or between left and right wheels. The target yaw rate establishing section calculates a target yaw rate based on a vehicle mass, a mass distribution ratio between front and rear axles, front and rear axle mass, distances between front and rear axles and a center of gravity, a steering angle of a front wheel, and front and rearwheels equivalent cornering powers. A steady state yaw rate gain is separately calculated for left and right steering, respectively. A reference yaw rate is calculated by correcting a time constant of lag of yaw rate with respect to steering based on estimated road friction coefficient.
    Type: Application
    Filed: April 22, 2002
    Publication date: October 24, 2002
    Applicant: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Koji Matsuno, Katsufumi Ichikawa, Masaru Kogure, Yutaka Hiwatashi, Takayuki Ushijima
  • Patent number: 6442469
    Abstract: A target yaw rate setting unit of a control characteristics changing unit computes a first target yaw rate based on the radius of curvature of a curve. A target yaw rate setting unit of a braking force control unit computes a second target yaw rate based on driving conditions. When a cornering decision unit decides a turning intention, if the absolute value of the first target yaw rate is larger than the absolute value of the second target yaw rate, the second target yaw rate is corrected with the first target yaw rate, and the corrected second target yaw rate is outputted to a target yaw rate changing unit. A braking force control unit controls the braking force with the second target yaw rate corrected.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: August 27, 2002
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventor: Koji Matsuno
  • Patent number: 6392535
    Abstract: A vehicle dynamic control system includes: (a) a running condition detecting system for detecting running conditions of a vehicle; (b) a road data detecting system for detecting road data relating to a road in front of the vehicle; (c) a permissible speed calculating system for calculating a permissible speed for passing through a curve based on the running conditions and the road data; (d) an equivalent linear distance calculating system for calculating an equivalent linear distance as a distance for performing a deceleration operation by shortening a distance from a point of operation to the curve in front of the vehicle based on a permissible deceleration at a winding part of the road and a curvature of the winding part between the point of operation and the curve so as to consider a permissible deceleration applicable at the winding part of the road; (e) a passing judgement system for judging a possibility of the vehicle passing through the curve by a parameter based on at least the equivalent linear dist
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: May 21, 2002
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Koji Matsuno, Munenori Matsuura
  • Publication number: 20020052681
    Abstract: A target yaw rate setting unit of a control characteristics changing unit computes a first target yaw rate based on the radius of curvature of a curve. A target yaw rate setting unit of a braking force control unit computes a second target yaw rate based on driving conditions. When a cornering decision unit decides a turning intention, if the absolute value of the first target yaw rate is larger than the absolute value of the second target yaw rate, the second target yaw rate is corrected with the first target yaw rate, and the corrected second target yaw rate is outputted to a target yaw rate changing unit. A braking force control unit controls the braking force with the second target yaw rate corrected.
    Type: Application
    Filed: October 10, 2001
    Publication date: May 2, 2002
    Inventor: Koji Matsuno
  • Publication number: 20020011093
    Abstract: A slip angle calculating unit calculates a slip angle of a vehicle body corresponding to a steering wheel angle and a vehicle speed, based on a vehicle wheel angle and the vehicle speed, by an observer of a preset vehicle motion model under a motion equation of a vehicle. A front wheel slip angle calculating unit calculates a front wheel slip angle based on the steering wheel angle, a vehicle speed, a yaw rate, and the calculated vehicle body slip angle. A self-aligning torque calculating unit calculates the self-aligning torque based on the hydraulic chamber pressure of the left side and the hydraulic chamber pressure of the right side in a power cylinder. The vehicle speed, an estimated front wheel slip angle, and the self-aligning torque are inputted to a road friction coefficient setting unit, and the road friction coefficient setting unit sets a road friction coefficient by referring to a map based on the input to output the set value.
    Type: Application
    Filed: June 18, 2001
    Publication date: January 31, 2002
    Applicant: Fuji Jukogyo Kabushiki Kaisha
    Inventor: Koji Matsuno
  • Publication number: 20020002433
    Abstract: A correction coefficient setting unit calculates as a difference in an actual revolution speed the difference between the actual revolution speed of a front driving axle and the actual revolution speed of a rear driving axle. Moreover, the correction coefficient setting unit calculates the ideal reference revolution speed of the front driving axle and the ideal reference revolution speed of the rear driving axle in consideration of a difference in a radius of gyration between the driving axles. The correction coefficient setting unit also calculates as a difference in a reference revolution speed the difference between the ideal reference revolution speed of the front driving axle and the ideal reference revolution speed of the rear driving axle.
    Type: Application
    Filed: June 18, 2001
    Publication date: January 3, 2002
    Applicant: Fuji Jukogyo Kabushiki Kaisha
    Inventor: Koji Matsuno
  • Publication number: 20020002437
    Abstract: A control section of a road friction coefficient estimating apparatus inputs a vehicle speed, a steering wheel angle and a yaw rate from a vehicle speed sensor, a steering wheel angle sensor and a yaw rate sensor, respectively. The control section comprises a reference yaw rate calculating section, a yaw rate deviation calculating section, a yaw rate deviation dispersion calculating section and a road friction coefficient establishing section. The reference yaw rate calculating section calculates a reference yaw rate based on vehicle speed and steering angle in accordance with a vehicle motion model. The yaw rate deviation calculating section calculates a yaw rate deviation based on the reference yaw rate and the actual yaw rate. The yaw rate deviation dispersion calculating section calculates a dispersion of the yaw rate deviation for a specified sampling number.
    Type: Application
    Filed: June 18, 2001
    Publication date: January 3, 2002
    Applicant: Fuji Jukogyo Kabushiki Kaisha
    Inventor: Koji Matsuno
  • Patent number: 6286915
    Abstract: A vehicle speed, an actual steering angle, an actual vehicle yaw rate, and a lateral vehicle acceleration are detected. On the basis of the detected vehicle speed, the detected actual vehicle yaw rate, and the detected lateral vehicle acceleration, the vehicle body slip angular velocity calculating section (32) calculates a vehicle body slip angular velocity. On the basis of the detected actual yaw rate, the detected vehicle speed, and the corrected actual steering angle, the target yaw moment calculating section (34) calculates a target yaw moment. Further, on the basis of the target yaw moment, the target braking force calculating section (35) calculates a target braking force to be applied to the braked wheel. Therefore, even if the driver unavoidably turns the steering wheel excessively on a slippery road, for instance, the target braking force is not set to a large value beyond necessity, with the result that a stable vehicle turning travel can be attained.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: September 11, 2001
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventor: Koji Matsuno
  • Publication number: 20010020217
    Abstract: In a control unit of an own vehicle, specifically in a deceleration judging section, a deceleration calculating section and a brake control section, in order to avoid contacting an obstacle in front of the vehicle, the vehicle is automatically braked based on an distance between the vehicle and the obstacle, a vehicle speed and a road gradient. When a braking distance judging section judges that the vehicle can not avoid a contact with the obstacle with a deceleration presently applied, a first yaw rate calculating section calculates a first yaw rate necessary to avoid a contact with the obstacle and a second yaw rate calculating section calculates a second yaw rate presently generating. Further, a target yaw rate establishing section compares an absolute value of the first yaw rate with an absolute value of the second yaw rate and establishes a larger one of these values as a target yaw rate.
    Type: Application
    Filed: March 2, 2001
    Publication date: September 6, 2001
    Inventor: Koji Matsuno
  • Patent number: 6283560
    Abstract: A vehicle speed, an actual steering angle, an actual vehicle yaw rate, and a lateral vehicle acceleration are detected. On the basis of the detected vehicle speed, the detected actual vehicle yaw rate, and the detected lateral vehicle acceleration, the vehicle body slip angular velocity calculating section (32) calculates a vehicle body slip angular velocity. On the basis of the calculated vehicle body slip angular velocity, the front wheel steering wheel angle correcting section (33) corrects the actual steering angle. Further, the braking signal output section (37) outputs a braking signal to the brake driving section (16) so that the target braking force calculated by the target braking force calculating section (35) can be applied to the braked wheel selected by the braked wheel selecting section (36).
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: September 4, 2001
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventor: Koji Matsuno
  • Patent number: 6280007
    Abstract: A vehicle speed, an actual steering angle, an actual vehicle yaw rate, and a lateral vehicle acceleration are detected. On the basis of the detected vehicle speed, the detected actual vehicle yaw rate, and the detected lateral vehicle acceleration, the vehicle body slip angular velocity calculating section (32) calculates a vehicle body slip angular velocity. On the basis of the calculated vehicle body slip angular velocity, the front wheel steering wheel angle correcting section (33) corrects the actual steering angle. On the other hand, the braked wheel selecting section (36) selects a braked wheel. Further, the braking signal output section (37) outputs a braking signal to the brake driving section (16) so that the target braking force calculated by the target braking force calculating section (35) can be applied to the braked wheel selected by the braked wheel selecting section (36).
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: August 28, 2001
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventor: Koji Matsuno
  • Publication number: 20010005101
    Abstract: A vehicle speed, an actual steering angle, an actual vehicle yaw rate, and a lateral vehicle acceleration are detected. On the basis of the detected vehicle speed, the detected actual vehicle yaw rate, and the detected lateral vehicle acceleration, the vehicle body slip angular velocity calculating section (32) calculates a vehicle body slip angular velocity. On the basis of the calculated vehicle body slip angular velocity, the front wheel steering wheel angle correcting section (33) corrects the actual steering angle. On the basis of the detected actual yaw rate, the detected vehicle speed, and the corrected actual steering angle, the target yaw moment calculating section (34) calculates a target yaw moment. On the other hand, the braked wheel selecting section (36) selects a braked wheel. Further, on the basis of the target yaw moment, the target braking force calculating section (35) calculates a target braking force to be applied to the braked wheel.
    Type: Application
    Filed: January 26, 2001
    Publication date: June 28, 2001
    Inventor: Koji Matsuno
  • Publication number: 20010002769
    Abstract: A vehicle speed, an actual steering angle, an actual vehicle yaw rate, and a lateral vehicle acceleration are detected. On the basis of the detected vehicle speed, the detected actual vehicle yaw rate, and the detected lateral vehicle acceleration, the vehicle body slip angular velocity calculating section (32) calculates a vehicle body slip angular velocity. On the basis of the calculated vehicle body slip angular velocity, the front wheel steering wheel angle correcting section (33) corrects the actual steering angle. On the basis of the detected actual yaw rate, the detected vehicle speed, and the corrected actual steering angle, the target yaw moment calculating section (34) calculates a target yaw moment. On the other hand, the braked wheel selecting section (36) selects a braked wheel. Further, on the basis of the target yaw moment, the target braking force calculating section (35) calculates a target braking force to be applied to the braked wheel.
    Type: Application
    Filed: January 26, 2001
    Publication date: June 7, 2001
    Inventor: Koji Matsuno
  • Publication number: 20010002770
    Abstract: A vehicle speed, an actual steering angle, an actual vehicle yaw rate, and a lateral vehicle acceleration are detected. On the basis of the detected vehicle speed, the detected actual vehicle yaw rate, and the detected lateral vehicle acceleration, the vehicle body slip angular velocity calculating section (32) calculates a vehicle body slip angular velocity. On the basis of the calculated vehicle body slip angular velocity, the front wheel steering wheel angle correcting section (33) corrects the actual steering angle. On the basis of the detected actual yaw rate, the detected vehicle speed, and the corrected actual steering angle, the target yaw moment calculating section (34) calculates a target yaw moment. On the other hand, the braked wheel selecting section (36) selects a braked wheel. Further, on the basis of the target yaw moment, the target braking force calculating section (35) calculates a target braking force to be applied to the braked wheel.
    Type: Application
    Filed: January 26, 2001
    Publication date: June 7, 2001
    Inventor: Koji Matsuno
  • Patent number: 6223124
    Abstract: The present invention provides a route consideration apparatus which can reduce amount of road geometry data to a necessary and sufficient volume to be managed, foreseeing probable routes by selecting branch roads appropriately. The route assessor 5 designates three route at maximum, i.e., the first prior route to the third prior route, according to the data inputted from the navigator. The curve geometry detector 6 detects rode geometry according to inputted data from the navigator 3. Thus previewing of route to be traveled can be carried out effectively and the vehicle dynamic control system works well with the previewing function.
    Type: Grant
    Filed: January 25, 1999
    Date of Patent: April 24, 2001
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Koji Matsuno, Munenori Matsuura, Toshihiro Konno, Akira Takahashi, Atsushi Mine
  • Patent number: 6219609
    Abstract: The present invention provides a vehicle dynamic control system which alters characteristics of respective vehicle movement controllers so that they can function properly against coming and foreseeable running conditions and current running conditions, recognizing beforehand details of an emerging curve on the road to be traveled. The system comprises a vehicle movement control alterant and at least one among vehicle movement controllers, i.e., a brake controller, a left/right wheel differential limiter controller and power distribution controller. When the vehicle is approaching the curve, the vehicle movement control alterant alters characteristics of a braking controller, the left/right wheel differential limiter controller and the power distribution controller to those favorable to turning for driving through a curve appropriately.
    Type: Grant
    Filed: October 19, 1998
    Date of Patent: April 17, 2001
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Koji Matsuno, Munenori Matsuura, Toshihiro Konno, Akira Takahashi, Atsushi Mine
  • Patent number: 6209972
    Abstract: A vehicle speed, an actual steering angle, an actual vehicle yaw rate, and a lateral vehicle acceleration are detected. On the basis of the detected vehicle speed, the detected actual vehicle yaw rate, and the detected lateral vehicle acceleration, the vehicle body slip angular velocity calculating section (32) calculates a vehicle body slip angular velocity. On the basis of the calculated vehicle body slip angular velocity, the front wheel steering wheel angle correcting section (33) corrects the actual steering angle. On the basis of the detected actual yaw rate, the detected vehicle speed, and the corrected actual steering angle, the target yaw moment calculating section (34) calculates a target yaw moment. On the other hand, the braked wheel selecting section (36) selects a braked wheel. Further, on the basis of the target yaw moment, the target braking force calculating section (35) calculates a target braking force to be applied to the braked wheel.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: April 3, 2001
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventor: Koji Matsuno
  • Patent number: 6208927
    Abstract: A vehicle maneuvering control device is disclosed. A curve of a road is detected to calculate curve data including a distance between a vehicle and the curve, and a physical quantity indicating a degree of the curve. An allowable deceleration is set at which the vehicle can travel in accordance with conditions of the road. An allowable lateral acceleration is set at which the vehicle can travel in accordance with the conditions of the road. An allowable approaching speed is set at which the vehicle can approaches the curve based on the physical quantity and the lateral acceleration. A deceleration judging speed is calculated for judging whether a present speed at which the vehicle is traveling should be decreased based on the distance, the allowable deceleration and the allowable approaching speed. And, the present speed is decreased when it is higher than the deceleration judging speed.
    Type: Grant
    Filed: September 9, 1998
    Date of Patent: March 27, 2001
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Atsushi Mine, Koji Matsuno
  • Patent number: 6208929
    Abstract: In the case that a brake controller is installed to a 4 wheel driven vehicle, braking force control should be carried out effectively enough so that running stability of the vehicle can be up-graded at cornering. The brake controller 40 calculates differential value of aimed yaw rate, differential value of predicted yaw rate on low friction road and deflection of the two differential values. And also it calculates deflection of real yaw rate and aimed yaw rate. Then the brake controller 40 determines aimed braking force and applies the aimed braking force to a selected wheel to carry out braking control. The torque distribution controller 70 receives control parameters and signals of status of brake control and carries out torque distribution control based on the parameters and signals through the hydraulic multi-plate clutch 21.
    Type: Grant
    Filed: June 5, 1999
    Date of Patent: March 27, 2001
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Koji Matsuno, Yutaka Hiwatashi
  • Patent number: 6188316
    Abstract: Recognizing curve geometry, judgement accuracy of an over speed condition is improved with minimal increase of calculation load, even when the road to an objective curve is not a straight line. The standard deceleration calculator calculates a standard deceleration from the road surface friction coefficient and road slope. The permissible access speed calculator calculates a permissible access speed from the permissible lateral acceleration based on road geometry and the road surface friction coefficient. The equivalent linear distance calculator calculates an equivalent linear distance, converting a winding part of a road to the objective curve into an equivalent straight line. The passing judgement device compares a required deceleration, which is determined based on the present vehicle speed, the permissible access speed and the equivalent linear distance, with a warning deceleration level and a forced deceleration level, which are calculated from the standard deceleration.
    Type: Grant
    Filed: March 11, 1999
    Date of Patent: February 13, 2001
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Koji Matsuno, Munenori Matsuura