Patents by Inventor Koji Miyazaki

Koji Miyazaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128629
    Abstract: A directional coupler includes a main line, a first sub-line, a second sub-line, a first phase shift circuit, a first short-circuit path, and a first short-circuit switch. The first phase shift circuit is connected between the first sub-line and the second sub-line. The first short-circuit path short-circuits both ends of the first phase shift circuit. The first short-circuit switch switches between conduction and non-conduction of the first short-circuit path.
    Type: Application
    Filed: October 5, 2023
    Publication date: April 18, 2024
    Inventors: Yuuta MIYAZAKI, Koji FURUTANI, Naoya AKASHI
  • Patent number: 11958495
    Abstract: A vehicle display control device, includes a memory; and a processor coupled to the memory. The processor is configured to cause a display unit provided in a vehicle cabin to display an inducement image requesting that an occupant grip a steering wheel in a case in which it is necessary for the occupant to grip the steering wheel, and cause the display unit to display the inducement image more prominently in a case of requesting that the occupant grip the steering wheel before the vehicle switches from an autonomous driving mode to a manual driving mode as the vehicle is continuing to drive autonomously, than in a case of requesting that the occupant continue to grip the steering wheel as the vehicle is continuing to drive autonomously.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: April 16, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Satoaki Takabatake, Koji Kimura, Junji Miyazaki, Ryo Ogata, Yuki Yoshida, Tadashi Morishita
  • Patent number: 11942170
    Abstract: An object is to provide a pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit. A pulse signal output circuit according to one embodiment of the disclosed invention includes first to tenth transistors. The ratio W/L of the channel width W to the channel length L of the first transistor and W/L of the third transistor are each larger than W/L of the sixth transistor. W/L of the fifth transistor is larger than W/L of the sixth transistor. W/L of the fifth transistor is equal to W/L of the seventh transistor. W/L of the third transistor is larger than W/L of the fourth transistor. With such a structure, a pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit can be provided.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: March 26, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Seiko Amano, Kouhei Toyotaka, Hiroyuki Miyake, Aya Miyazaki, Hideaki Shishido, Koji Kusunoki
  • Patent number: 11939183
    Abstract: A post-processing apparatus (1) includes a first conveyance path (41), a first processing part (55), a second conveyance path (95) and a merging conveyance path (97), and the first processing part (55) includes a conveying rollers pair (80) including a first roller (81) and a second roller (83) conveying the sheet along a first direction; a first folding rollers pair (84) including the first roller (81) and a third roller (85) forming a first nip, conveying the sheet along a second direction and performing a folding processing along a first fold line; a second folding rollers pair (86) including the third roller (85) and a fourth roller (87) forming a second nip, conveying the sheet along a third direction and performing a folding processing along a second fold line; a first folding guide (89) movable to the first nip; and a second folding guide (91) movable to the second nip.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: March 26, 2024
    Assignee: KYOCERA Document Solutions Inc.
    Inventors: Tadahisa Kishimoto, Yoshiaki Tashiro, Koji Murata, Masahiko Miyazaki
  • Publication number: 20240082413
    Abstract: As an antitumor drug which is excellent in terms of antitumor effect and safety, there is provided an antibody-drug conjugate in which an antitumor compound represented by the following formula is conjugated to an antibody via a linker having a structure represented by the following formula: -L1-L2-LP-NH—(CH2)n1-La-Lb-Lc- wherein the antibody is connected to the terminal of L1, and the antitumor compound is connected to the terminal of Lc with the nitrogen atom of the amino group at position 1 as a connecting position.
    Type: Application
    Filed: March 3, 2023
    Publication date: March 14, 2024
    Applicant: DAIICHI SANKYO COMPANY, LIMITED
    Inventors: Takeshi MASUDA, Hiroyuki NAITO, Takashi NAKADA, Masao YOSHIDA, Shinji ASHIDA, Hideki MIYAZAKI, Yuji KASUYA, Koji MORITA, Yuki ABE, Yusuke OGITANI
  • Patent number: 11549940
    Abstract: A method for detecting an analyte according to the present invention includes: a first step of supplying a specimen to a detection device having a first ligand that is immobilized on a substrate and is capable of specifically binding to the analyte, the specimen being supplied onto the substrate of the detection device, and then causing the analyte included in the specimen to bind to the first ligand; a second step of supplying, onto the substrate, a second ligand that is labeled with a marker and is capable of specifically binding to the analyte, and then causing the second ligand to bind to the analyte bound to the first ligand; and a third step of measuring the second ligand bound to the analyte, wherein in the second step, carboxymethyl dextran is supplied onto the substrate.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: January 10, 2023
    Assignee: OTSUKA PHARMACEUTICAL CO., LTD.
    Inventors: Makiko Otani, Koji Miyazaki
  • Publication number: 20210207776
    Abstract: The flow path of a container valve communicates from a container attachment portion, to be attached to a fluid storage container, to an outlet, and is provided with a valve chamber, accommodating an open/close valve, in a middle part thereof. A portion of the flow path from an end of the container attachment portion to a bottom surface of the valve chamber is set as a primary flow path, and a portion of the flow path from an inner side surface of the valve chamber to an end of the outlet is set as a secondary flow path. In an outer circumferential portion of the bottom surface of the valve chamber, a discharge promotion groove is formed continuously with a portion corresponding to the lateral opening in a circumferential direction. A bottom surface of the secondary flow path is located below a bottom surface of the discharge promotion groove.
    Type: Application
    Filed: March 25, 2021
    Publication date: July 8, 2021
    Inventors: Atsushi ICHITSUBO, Masaru TAKEDA, Shinji OKADA, Koji MIYAZAKI
  • Publication number: 20210069716
    Abstract: To provide a temperature adjustment stage that can efficiently heat a cartridge in accordance with necessity of heating each well. A temperature adjustment stage for heating a cartridge in which a plurality of wells that store a liquid are formed. The cartridge is used in an inspection system that detects an object captured by an immunoreaction, the wells include a labeled antibody well that stores a labeled antibody that labels the object, and there is provided a structure that does not heat the labeled antibody well.
    Type: Application
    Filed: October 24, 2018
    Publication date: March 11, 2021
    Inventors: Koji MIYAZAKI, Hideyuki FUJII, Ko OSAWA, Takanori MURAYAMA
  • Patent number: 10837978
    Abstract: The present invention provides a method for removing liquid from the interior of a flow channel tip, which enables both to reduce the amount of liquid remaining and prevent the time spent removing the liquid from being longer than necessary. The method comprises: suctioning a liquid within a flow channel, the liquid being suctioned into the interior of a liquid suction implement inserted into a first through-hole of a flow channel tip; and removing the liquid within the flow channel. This method comprises: a first suction step for suctioning some of the liquid within the flow channel at a first suction speed; and a second suction step for suctioning the liquid remaining within the flow channel at a second suction speed that is less than the first suction speed, the second suction step being performed in continuation from the first suction step.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: November 17, 2020
    Assignee: Konica Minolta, Inc.
    Inventors: Atsuo Iwashita, Youichi Aoki, Koji Miyazaki
  • Publication number: 20200249226
    Abstract: A method for detecting an analyte according to the present invention includes: a first step of supplying a specimen to a detection device having a first ligand that is immobilized on a substrate and is capable of specifically binding to the analyte, the specimen being supplied onto the substrate of the detection device, and then causing the analyte included in the specimen to bind to the first ligand; a second step of supplying, onto the substrate, a second ligand that is labeled with a marker and is capable of specifically binding to the analyte, and then causing the second ligand to bind to the analyte bound to the first ligand; and a third step of measuring the second ligand bound to the analyte, wherein in the second step, carboxymethyl dextran is supplied onto the substrate.
    Type: Application
    Filed: October 2, 2018
    Publication date: August 6, 2020
    Inventors: Makiko OTANI, Koji MIYAZAKI
  • Patent number: 10429306
    Abstract: A surface plasmon resonance fluorescence analysis device has a chip holder for holding an analysis chip, a light source for irradiating excitation light, an angle adjustment unit for adjusting the angle of incidence of the excitation light in relation to the interface of a prism and metal film of the analysis chip, an excitation light reflection filter, a first optical sensor for detecting the fluorescence emitted from the analysis chip and transmitted through the excitation light reflection filter, a second optical sensor for detecting the plasmon scattered light emitted from the analysis chip and reflected by the excitation light reflection filter, and a control unit for controlling the angle adjustment unit. The control unit determines an enhancement angle on the basis of the plasmon scattered light detection results of the second optical sensor.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: October 1, 2019
    Assignee: KONICA MINOLTA, INC.
    Inventors: Hideyuki Fujii, Tetsuya Noda, Koji Miyazaki
  • Publication number: 20190247450
    Abstract: Provided is an agent or a food or drink for inhibiting the onset of overall disease. An agent for inhibiting a decrease in a disease-free rate comprises a lactic acid bacterium as an active ingredient.
    Type: Application
    Filed: October 30, 2017
    Publication date: August 15, 2019
    Applicants: KABUSHIKI KAISHA YAKULT HONSHA, TOKYO METROPOLITAN GERIATRIC HOSPITAL AND INSTITUTE OF GERONTOLOGY
    Inventors: Yukitoshi AOYAGI, Satoshi MATSUBARA, Yusuke HONDA, Ryuta AMAMOTO, Koji MIYAZAKI
  • Publication number: 20180321270
    Abstract: The present invention provides a method for removing liquid from the interior of a flow channel tip, which enables both to reduce the amount of liquid remaining and prevent the time spent removing the liquid from being longer than necessary. The method comprises: suctioning a liquid within a flow channel, the liquid being suctioned into the interior of a liquid suction implement inserted into a first through-hole of a flow channel tip; and removing the liquid within the flow channel This method comprises: a first suction step for suctioning some of the liquid within the flow channel at a first suction speed; and a second suction step for suctioning the liquid remaining within the flow channel at a second suction speed that is less than the first suction speed, the second suction step being performed in continuation from the first suction step.
    Type: Application
    Filed: November 2, 2016
    Publication date: November 8, 2018
    Inventors: Atsuo IWASHITA, Youichi AOKI, Koji MIYAZAKI
  • Publication number: 20180059130
    Abstract: In a detection method, a first pressure within a pipette tip is measured when air is sucked into or expelled from the leading end of the pipette tip in a state where the leading end of the pipette tip and a reference part of a solid are separated. A second pressure within the pipette tip is measured when air is sucked into or expelled from the leading end of the pipette tip in a state where the leading end of the pipette tip and the reference part of the solid are closer than in the first step. After the first step and second step, the position of the leading end of the pipette tip in relation to the reference part is detected on the basis of the difference between the first pressure measured in the first step and the second pressure measured in the second step.
    Type: Application
    Filed: January 19, 2016
    Publication date: March 1, 2018
    Applicant: Konica Minolta, Inc.
    Inventors: Atsuo IWASHITA, Tetsuya NODA, Masataka MATSUO, Koji MIYAZAKI, Yuuya SHOUJI
  • Patent number: 9861297
    Abstract: To provide a gas analysis device comprising: a cell; a light source; and a detector, wherein two or more types of gaseous components contained in the gas are measurement targets, a mid-infrared light with a wavelength that is caused to match the absorption spectrum of the measurement target gaseous components is output from the light source, and concentrations of the gaseous components are obtained based on light intensity detected by the detector. The gas analysis device sets a cumulative measurement time for the mid-infrared lights with the wavelengths for respective ones of the measurement target gaseous components; and controls at least one of an output time of the light source and a detection time of the detector in accordance with the cumulative measurement times, thereby efficiently measuring the plurality of types of gaseous components contained in the gas by using the mid-infrared lights with the plurality of wavelengths.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: January 9, 2018
    Assignee: RIKEN
    Inventors: Masaki Yumoto, Koji Miyazaki, Satoshi Wada, Takayo Ogawa, Shinichi Imai
  • Patent number: 9739504
    Abstract: The present invention provides a steam generator capable of greatly improving energy efficiency, and an energy supply system that uses the steam generator. The steam generator of the present invention includes a high-temperature chamber to which heat of 250° C. to 800° C. is supplied; a low-temperature chamber arranged adjacent to the high-temperature chamber and configured to produce low-temperature steam of 50° C. to 185° C. from water using the heat of the high-temperature chamber; and at least one thermoelectric element arranged between the high-temperature chamber and the low-temperature chamber.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: August 22, 2017
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, KYUSHU INSTITUTE OF TECHNOLOGY, JGC CORPORATION, SASAKURA ENGINEERING CO., LTD.
    Inventors: Yutaka Tamaura, Yoshiharu Horita, Koji Miyazaki, Kazutaka Hiraoka, Toru Kannari
  • Patent number: 9691961
    Abstract: The present invention provides a thermoelectric conversion material having a low thermal conductivity and having an improved figure of merit, and a method for producing it. The thermoelectric conversion material has, as formed on a substrate having a nano-level microporous nanostructure, a thermoelectric semiconductor layer prepared by forming a thermoelectric semiconductor material into a film, wherein the substrate is a block copolymer substrate formed of a block copolymer that comprises a polymethyl methacrylate unit and a polyhedral oligomeric silsesquioxane-containing polymethacrylate unit, and the thermoelectric semiconductor material is a p-type bismuth telluride or an n-type bismuth telluride. The production method comprises a substrate formation step of forming the nanostructure-having block copolymer substrate, and a film formation step of forming a p-type bismuth telluride or an n-type bismuth telluride into a film to thereby provide a thermoelectric semiconductor layer.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: June 27, 2017
    Assignees: KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, LINTEC CORPORATION
    Inventors: Kunihisa Kato, Chihaya Adachi, Koji Miyazaki, Teruaki Hayakawa
  • Patent number: 9620697
    Abstract: The present invention provides a thermoelectric conversion material of which the structure is controlled to have nano-order microscopic pores and which has a low thermal conductivity and has an improved thermoelectric performance index. In the thermoelectric conversion material having a thermoelectric semiconductor layer formed on a block copolymer substrate that comprises a block copolymer having microscopic pores, wherein the block copolymer comprises a polymer unit (A) formed of a monomer capable of forming a homopolymer having a glass transition temperature of 50° C. or higher, and a polymer unit (B) formed of a conjugated dienic polymer.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: April 11, 2017
    Assignees: KYUSHU INSTITUTE OF TECHNOLOGY, LINTEC CORPORATION
    Inventors: Tsuyoshi Mutou, Koji Miyazaki, Yoshika Hatasako, Kunihisa Kato
  • Patent number: 9608190
    Abstract: The invention provides a thermoelectric conversion material having a low thermal conductivity and an improved figure of merit and a production method for the material, and also provides a thermoelectric conversion module. The thermoelectric conversion material has, on a porous substrate having microscopic pores, a thermoelectric semiconductor layer formed of a thermoelectric semiconductor material, wherein the porous substrate has a polymer layer (B) on a plastic film (A) and the microscopic pores are formed in the polymer layer (B) and in a part of the plastic film (A). The production method for the thermoelectric conversion material comprises a substrate formation step of forming a porous substrate including a step 1, a step 2 and a step 3, and comprises a film formation step of forming a thermoelectric semiconductor layer through film formation of a thermoelectric semiconductor material on the porous substrate. The thermoelectric conversion module uses the thermoelectric conversion material.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: March 28, 2017
    Assignees: LINTEC CORPORATION, KYUSHU INSTITUTE OF TECHNOLOGY
    Inventors: Kunihisa Kato, Tsuyoshi Mutou, Koji Miyazaki, Aiko Harada
  • Publication number: 20160331270
    Abstract: To provide a gas analysis device comprising: a cell; a light source; and a detector, wherein two or more types of gaseous components contained in the gas are measurement targets, a mid-infrared light with a wavelength that is caused to match the absorption spectrum of the measurement target gaseous components is output from the light source, and concentrations of the gaseous components are obtained based on light intensity detected by the detector. The gas analysis device sets a cumulative measurement time for the mid-infrared lights with the wavelengths for respective ones of the measurement target gaseous components; and controls at least one of an output time of the light source and a detection time of the detector in accordance with the cumulative measurement times, thereby efficiently measuring the plurality of types of gaseous components contained in the gas by using the mid-infrared lights with the plurality of wavelengths.
    Type: Application
    Filed: September 8, 2014
    Publication date: November 17, 2016
    Applicant: RIKEN
    Inventors: Masaki YUMOTO, Koji MIYAZAKI, Satoshi WADA, Takayo OGAWA, Shinichi IMAI