Patents by Inventor Koji Okamoto

Koji Okamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240140918
    Abstract: A compound represented by formula (1) below, useful for treating cancer. In the formula, R1 and R3-R8 each independently represents a hydrogen atom or an alkyl group, R2 represents a hydrogen atom or a group represented by —ORa, R9 represents a group represented by —C(O)NRcRf, Ra, Re, and Rf each independently represents a hydrogen atom, an arylalkyl group that may have a substituent, or a heteroarylalkyl group.
    Type: Application
    Filed: January 28, 2022
    Publication date: May 2, 2024
    Inventors: Isamu SHIINA, Motoyuki SHIMONAKA, Takatsugu MURATA, Yuuki OBATA, Toshirou NISHIDA, Koji OKAMOTO
  • Publication number: 20240133070
    Abstract: A mask structure includes a screen mask having a penetrating portion with a predetermined pattern. The screen mask includes a mesh portion having an opening formed in a grid pattern, and a mask portion having the penetrating portion and being fixed to the mesh portion so as to face the substrate. The mask portion includes a core portion that retains the shape of the mask portion, and a seal portion made of an elastic material softer than the material of the core portion and contacting the substrate.
    Type: Application
    Filed: October 3, 2023
    Publication date: April 25, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Haruki KONDOH, Keiji KURODA, Koji INAGAKI, Kazuaki OKAMOTO, Hiroshi YANAGIMOTO
  • Patent number: 11956575
    Abstract: Mapping of ports to other network components is generated by physically bending a fiber optic cable and then determining which optical network terminals experience a signal power loss (or receive attenuated signals) based on the bending. The physical bending can be done using a bending tool and the optical network terminals that experience the signal power loss can be identified using a back-end database operation. Generally, the correspondence between the physical bending and the power loss at the downstream components and or upstream components of the network is used to create the mapping of the ports at the splitter level.
    Type: Grant
    Filed: July 11, 2023
    Date of Patent: April 9, 2024
    Assignee: Viavi Solutions Inc.
    Inventors: David Hering, Karl Oberlin, Koji Okamoto
  • Patent number: 11945802
    Abstract: Provided is an additive for imparting ultraviolet absorbency, or an additive for imparting a high refractive index, which has satisfactory compatibility with a resin serving as a matrix and can maintain high transparency even if added in high concentrations. Also provided is an additive with which the function of imparting both ultraviolet absorbency and a high refractive index can be realized by means of one kind of additive. This additive is represented by the following Formula (I): wherein at least one of R1a to R9a is a monovalent sulfur-containing group represented by the following Formula (i-1) or Formula (i-2): wherein R10a to R12a each represent a divalent hydrocarbon group or the like; and R13a represents a monovalent hydrocarbon group or the like.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: April 2, 2024
    Assignees: MIYOSHI OIL & FAT CO., LTD., TOKAI OPTICAL CO., LTD.
    Inventors: Koji Kawai, Kotaro Kaneko, Nobuhiro Kaneko, Yuichi Shishino, Kuniyoshi Okamoto
  • Patent number: 11942119
    Abstract: According to one embodiment, a magnetic recording/reproducing apparatus includes irreversible adsorbing materials in a sealed housing for the magnetic recording/reproducing apparatus.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: March 26, 2024
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage Corporation
    Inventors: Akiyo Mizutani, Koji Sonoda, Makoto Okamoto, Takuma Kido
  • Patent number: 11939197
    Abstract: A forklift-truck remote operation system includes a forklift truck and a remote operation device. The forklift-truck remote operation system further includes: a camera mounted to the forklift truck and configured to capture an image of an area around the forklift truck; a display disposed in the remote operation device and configured to display the image captured by the camera; a pallet detector configured to perform image recognition processing of the image captured by the camera and detect a plurality of pallets; a display controller configured to control the display to display the image captured by the camera with an indication for pallet selection from the pallets detected by the pallet detector; and a travel controller configured to control the forklift truck to move to a position of the selected pallet.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: March 26, 2024
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Junji Inoue, Koji Hika, Hironobu Okamoto
  • Publication number: 20240048875
    Abstract: Mapping of ports to other network components is generated by physically bending a fiber optic cable and then determining which optical network terminals experience a signal power loss (or receive attenuated signals) based on the bending. The physical bending can be done using a bending tool and the optical network terminals that experience the signal power loss can be identified using a back-end database operation. Generally, the correspondence between the physical bending and the power loss at the downstream components and or upstream components of the network is used to create the mapping of the ports at the splitter level.
    Type: Application
    Filed: August 5, 2022
    Publication date: February 8, 2024
    Applicant: VIAVI SOLUTIONS INC.
    Inventors: David HERING, Karl OBERLIN, Koji OKAMOTO
  • Publication number: 20240048876
    Abstract: Mapping of ports to other network components is generated by physically bending a fiber optic cable and then determining which optical network terminals experience a signal power loss (or receive attenuated signals) based on the bending. The physical bending can be done using a bending tool and the optical network terminals that experience the signal power loss can be identified using a back-end database operation. Generally, the correspondence between the physical bending and the power loss at the downstream components and or upstream components of the network is used to create the mapping of the ports at the splitter level.
    Type: Application
    Filed: July 11, 2023
    Publication date: February 8, 2024
    Applicant: Viavi Solutions Inc.
    Inventors: David HERING, Karl OBERLIN, Koji OKAMOTO
  • Publication number: 20240027455
    Abstract: Provided is a method of assisting breast cancer diagnosis, comprising: a measuring step for measuring an amount of laminin 5 or laminin ?3 in a specimen; and an information-providing step for providing information for breast cancer diagnosis based on the amount of laminin 5 or laminin ?3 thus measured. Provided is a test kit for breast cancer comprising an anti-laminin 5 antibody or an anti-laminin ?3 antibody.
    Type: Application
    Filed: December 6, 2021
    Publication date: January 25, 2024
    Applicants: NATIONAL CANCER CENTER, SHIMADZU CORPORATION, DAI NIPPON TORYO CO., LTD.
    Inventors: Kenji TAMURA, Kazuki SUDO, Takahisa MATSUDA, Taiki YAMAJI, Koji OKAMOTO, Makoto WATANABE, Hirotaka FUJIMOTO, Taka-Aki SATO, Yuta MIYAZAWA
  • Publication number: 20230349058
    Abstract: An ion exchange membrane containing: a layer S containing a fluorine-containing polymer having a sulfonic acid group; a layer C containing a fluorine-containing polymer having a carboxylic acid group; and—a plurality of reinforcing materials functioning as at least one of reinforcement yarn and sacrifice yarn; wherein, when the ion exchange membrane is viewed from a top surface, an average cross-sectional thickness A of the ion exchange membrane measured in pure water for a region, is ?m or more and 75 ?m or less, and wherein a strength change ratio calculated from strength S2 of the ion exchange membrane measured after the ion exchange membrane is subjected to a predetermined electrolysis test and strength S1 of the ion exchange membrane measured before the ion exchange membrane is subjected to the electrolysis test, in terms of 100×S2/S1, is 85% or more and 120% or less.
    Type: Application
    Filed: April 26, 2023
    Publication date: November 2, 2023
    Applicant: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Nao KAJIMOTO, Koji OKAMOTO
  • Patent number: 11712915
    Abstract: A sheet bundle discharging apparatus K, including: a conveyance unit 66 configured to convey a sheet bundle; a guide unit 72 configured to guide the sheet bundle conveyed by the conveyance unit; a discharging unit 90 configured to discharge the sheet bundle to an outside of the sheet bundle discharging apparatus; and a receiving unit 81 configured to receive the sheet bundle guided by the guide unit, wherein the receiving unit includes: a contact portion 81c with which a leading end portion of the sheet bundle, which is guided by the guide unit, in a moving direction of the sheet bundle is to be brought into contact; and a pushing portion 81b, which is formed integrally with the contact portion, and is configured to push a first surface of the sheet bundle, and wherein the receiving unit is rotatable between a first position and a second position, and is configured to receive the sheet bundle in the first position and rotate from the first position to the second position, thereby allowing the pushing portion
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: August 1, 2023
    Assignee: Canon Finetech Nisca Inc.
    Inventors: Koji Okamoto, Dai Matsubara, Keiichi Nagasawa
  • Patent number: 11148454
    Abstract: A sheet bundle discharging apparatus including: a conveyance belt configured to convey and discharge a sheet bundle in a conveyance direction; an attitude changing unit configured to change an attitude of the sheet bundle from a first attitude in which the sheet bundle is apart from the conveyance belt to a second attitude in which the sheet bundle is placed on the conveyance belt; and a receiving member configured to receive an end portion of the sheet bundle, wherein the attitude changing unit allows the end portion of the sheet bundle to pass through a region in which the conveyance belt is provided, in a belt width direction perpendicular to the conveyance direction, and thereafter reach a region in which the receiving member is provided, a friction coefficient between the sheet bundle and the receiving member being smaller than a friction coefficient between the sheet bundle and the conveyance belt.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: October 19, 2021
    Assignee: Canon Finetech Nisca Inc.
    Inventors: Koji Okamoto, Keiichi Nagasawa, Dai Matsubara, Isao Itagaki
  • Patent number: 11052696
    Abstract: A sheet bundle discharging apparatus, including: a guide unit configured to guide a sheet bundle with a spine as a leading end; a receiving unit configured to receive the spine of the sheet bundle guided by the guide unit; and a discharging unit configured to discharge the sheet bundle, wherein the receiving unit includes: a first surface configured to receive the spine at a first position; a second surface configured to push the sheet bundle in a rotation direction of the receiving unit; and a third surface configured to regulate a movement of the sheet bundle in the rotation direction while the receiving unit rotates from the first position to a second position, and wherein a friction coefficient between the sheet bundle and the third surface in a direction away from the first surface is larger than a friction coefficient between the first surface and the sheet bundle.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: July 6, 2021
    Assignee: Canon Finetech Nisca Inc.
    Inventors: Koji Okamoto, Tadahito Takano, Tsukasa Kondou
  • Patent number: 10991514
    Abstract: A method for producing an electrolytic capacitor includes: a first step of preparing an anode body, and forming a dielectric layer on a surface of the anode body; a second step of forming a first conductive polymer layer on a surface of the dielectric layer, the first conductive polymer layer including a first conductive polymer and a first silane compound; a third step of bringing the first conductive polymer layer into contact with a first treatment liquid; and a fourth step of providing a second silane compound to the first conductive polymer layer after the third step.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: April 27, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Nobuyuki Yamaguchi, Koji Fukuchi, Koji Okamoto, Tetsuro Iwasa, Takahiro Kobayashi, Yasuo Tanaka, Ryo Morioka
  • Patent number: 10943743
    Abstract: An electrolytic capacitor includes an anode body, a dielectric layer disposed on the anode body, a solid electrolyte layer disposed on the dielectric layer, and a cathode lead-out layer disposed on the solid electrolyte layer. The solid electrolyte layer contains a first conductive polymer having a thiophene skeleton and a second conductive polymer having an aniline skeleton. In the solid electrolyte layer, a mass ratio of the second conductive polymer with respect to a total mass of the first conductive polymer and the second conductive polymer in a region close to the dielectric layer is greater than a mass ratio of the second conductive polymer with respect to a total mass of the first conductive polymer and the second conductive polymer in a region close to the cathode lead-out layer.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: March 9, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hitoshi Fukui, Shinya Suzuki, Koji Okamoto, Makoto Nagashima
  • Publication number: 20210039417
    Abstract: A sheet bundle discharging apparatus K, including: a conveyance unit 66 configured to convey a sheet bundle; a guide unit 72 configured to guide the sheet bundle conveyed by the conveyance unit; a discharging unit 90 configured to discharge the sheet bundle to an outside of the sheet bundle discharging apparatus; and a receiving unit 81 configured to receive the sheet bundle guided by the guide unit, wherein the receiving unit includes: a contact portion 81c with which a leading end portion of the sheet bundle, which is guided by the guide unit, in a moving direction of the sheet bundle is to be brought into contact; and a pushing portion 81b, which is formed integrally with the contact portion, and is configured to push a first surface of the sheet bundle, and wherein the receiving unit is rotatable between a first position and a second position, and is configured to receive the sheet bundle in the first position and rotate from the first position to the second position, thereby allowing the pushing portion
    Type: Application
    Filed: January 25, 2019
    Publication date: February 11, 2021
    Inventors: Koji Okamoto, Dai Matsubara, Keiichi Nagasawa
  • Publication number: 20200392633
    Abstract: An ion exchange membrane, a method for producing an ion exchange membrane, and an electrolyzer that enable a reduction in the electrolytic voltage when subjected to electrolysis are provided which have small influence of impurities in the electrolyte on electrolysis performance, and exert stable electrolysis performance. An ion exchange membrane includes a membrane main body containing a fluorine-containing polymer having an ion exchange group; and a coating layer arranged on at least one face of the membrane main body. The coating layer includes inorganic particles and a binder, a mass ratio of the binder to the total mass of the inorganic particles and the binder in the coating layer is 0.3 or more and 0.9 or less, and a coverage of the membrane main body with the coating layer is 50% or more.
    Type: Application
    Filed: June 15, 2020
    Publication date: December 17, 2020
    Applicant: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Yuta KOTAKI, Shinichi KAIHARA, Koji OKAMOTO, Yuta IGARASHI
  • Patent number: 10865282
    Abstract: An ion exchange membrane includes: a membrane main body including a fluorine-containing polymer having an ion exchange group; and a coating layer arranged on at least one face of the membrane main body; wherein the coating layer includes inorganic particles and a binder, a mass ratio of the binder to the total mass of the inorganic particles and the binder in the coating layer is more than 0.3 and 0.9 or less, and a surface roughness of the coating layer is 1.20 ?m or more.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: December 15, 2020
    Assignee: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Koji Okamoto, Kazuya Takahashi
  • Patent number: 10861654
    Abstract: An electrolytic capacitor includes an anode body, a dielectric layer formed on the anode body, and a solid electrolyte layer covering at least a portion of the dielectric layer. The solid electrolyte layer includes a ?-conjugated conductive polymer, a high-molecular-weight dopant having an acid group, and a water-soluble polymer. The water-soluble polymer is a copolymer including a hydrophilic monomer unit having a hydrophilic group. The hydrophilic group is at least one group selected from the group consisting of a carboxyl group, an acid anhydride group, a phenolic hydroxyl group, and a C2-3 alkylene oxide group.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: December 8, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Youichirou Uka, Makoto Nagashima, Tetsuro Iwasa, Koji Okamoto
  • Patent number: 10764532
    Abstract: Unlike conventional methods and systems for locating ingress, which only monitor the upstream path, a method and system of locating ingress by monitoring the downstream path is provided. A test system measures the signal quality in the upstream path and in dependence upon a noise level being above a predetermined limit, polls a plurality of terminal equipment devices to return a downstream signal quality measurement. The test instrument analyzes the downstream signal quality measurements to locate an ingress source contributing to the noise.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: September 1, 2020
    Assignee: VIAVI SOLUTIONS INC.
    Inventors: Kevin J. Oliver, Koji Okamoto, Gregory W. Massey, Walter Miller