Patents by Inventor Koji Yamaji

Koji Yamaji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210039960
    Abstract: Provided is a cathode active material for a non-aqueous electrolyte secondary battery that improves the cycling characteristic and high-temperature storability without impairing the charge/discharge capacity and the output characteristics. A nickel cobalt containing composite hydroxide is obtained by using a batch type crystallization method in which a raw material aqueous solution that includes Ni, Co and Mg is supplied in an inert atmosphere to a reaction aqueous solution that is controlled so that the temperature is within the range 45° C. to 55° C., the pH value is within the range 10.8 to 11.8 at a reference liquid temperature of 25° C., and the ammonium-ion concentration is within the range 8 g/L to 12 g/L. An Al-coated composite hydroxide that is expressed by the general formula: Ni1-x-y-zCoxAlyMgz(OH)2 (where, 0.05?x?0.20, 0.01?y?0.06, and 0.01?z?0.
    Type: Application
    Filed: October 29, 2020
    Publication date: February 11, 2021
    Inventors: Takehide HONMA, Koji YAMAJI, Ryozo USHIO
  • Patent number: 10858265
    Abstract: Provided is a cathode active material for a non-aqueous electrolyte secondary battery that improves the cycling characteristic and high-temperature storability without impairing the charge/discharge capacity and the output characteristics. A nickel cobalt containing composite hydroxide is obtained by using a batch type crystallization method in which a raw material aqueous solution that includes Ni, Co and Mg is supplied in an inert atmosphere to a reaction aqueous solution that is controlled so that the temperature is within the range 45° C. to 55° C., the pH value is within the range 10.8 to 11.8 at a reference liquid temperature of 25° C., and the ammonium-ion concentration is within the range 8 g/L to 12 g/L. An Al-coated composite hydroxide that is expressed by the general formula: Ni1-x-y-zCoxAlyMgz(OH)2 (where, 0.05?x?0.20, 0.01?y?0.06, and 0.01?z?0.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: December 8, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Takehide Honma, Koji Yamaji, Ryozo Ushio
  • Publication number: 20200358093
    Abstract: The present invention provides a composite oxide that can achieve a high low-temperature output characteristic, a method for manufacturing the same, and a positive electrode active material in which the generation of soluble lithium is suppressed and a problem of gelation is not caused during the paste preparation. A positive electrode active material for non-aqueous electrolyte secondary batteries, including a lithium-metal composite oxide powder including a secondary particle configured by aggregating primary particles containing lithium, nickel, manganese, and cobalt, or a lithium-metal composite oxide powder including both the primary particles and the secondary particle. The secondary particle has a porous structure inside as a main inside structure, the slurry pH is 11.5 or less, the soluble lithium content rate is 0.5[% by mass] or less, the specific surface area is 3.0 to 4.0 [m2/g], and the porosity is more than 50 to 80[%].
    Type: Application
    Filed: July 31, 2018
    Publication date: November 12, 2020
    Inventors: Hiroko Oshita, Kazuomi Ryoshi, Taira Aida, Koji Yamaji, Jiro Okada
  • Publication number: 20200350565
    Abstract: The present invention provides a composite oxide that can achieve a high low-temperature output characteristic, a method for manufacturing the same, and a positive electrode active material in which the generation of soluble lithium is suppressed and a problem of gelation is not caused during the paste preparation. A positive electrode active material for non-aqueous electrolyte secondary batteries, including a lithium-metal composite oxide powder including a secondary particle configured by aggregating primary particles containing lithium, nickel, manganese, and cobalt, or a lithium-metal composite oxide powder including both the primary particles and the secondary particle, wherein the secondary particle has a hollow structure inside as a main inside structure, the slurry pH is 11.5 or less, the soluble lithium content rate is 0.5 [96 by mass] or less, the specific surface area is 2.0 to 3.0 [m2/g], and the porosity is 20 to 50 [96].
    Type: Application
    Filed: July 31, 2018
    Publication date: November 5, 2020
    Inventors: Hiroko Oshita, Kazuomi Ryoshi, Taira Aida, Koji Yamaji, Jiro Okada
  • Publication number: 20200335781
    Abstract: The present invention provides a lithium-nickel-manganese-cobalt composite oxide in which the reactivity between a lithium raw material and a metal composite hydroxide is improved so that a high low-temperature output characteristic can be achieved, a method for manufacturing the composite oxide, and a positive electrode active material and the like without causing a problem of gelation during the paste preparation. A positive electrode active material for non-aqueous electrolyte secondary batteries, including a lithium-metal composite oxide powder including a secondary particle configured by aggregating primary particles containing lithium, nickel, manganese, and cobalt, or a lithium-metal composite oxide powder including both the primary particles and the secondary particle. The secondary particle has a solid structure inside as a main inside structure, the slurry pH is 11.5 or less, the soluble lithium content rate is 0.5 [% by mass] or less, and the specific surface area is 1.0 to 2.0 [m2/g].
    Type: Application
    Filed: July 31, 2018
    Publication date: October 22, 2020
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiroko Oshita, Kazuomi Ryoshi, Taira Aida, Koji Yamaji, Jiro Okada
  • Publication number: 20190260024
    Abstract: Provided are a nickel-manganese composite hydroxide capable of producing a secondary battery having a high particle fillability and excellent battery characteristics when used as a precursor of a positive electrode active material and a method for producing the same. A nickel-manganese composite hydroxide is represented by General Formula: NixMnyMz(OH)2+? and contains a secondary particle formed of a plurality of flocculated primary particles. The primary particles have an aspect ratio of at least 3, and at least some of the primary particles are disposed radially from a central part of the secondary particle toward an outer circumference thereof. The secondary particle has a ratio I(101)/I(001) of a diffraction peak intensity I(101) of a 101 plane to a peak intensity I(001) of a 001 plane, measured by an X-ray diffraction measurement, of up to 0.15.
    Type: Application
    Filed: June 6, 2017
    Publication date: August 22, 2019
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Takuma Nakamura, Haruki Kaneda, Takehide Honma, Takaaki Ando, Koji Yamaji
  • Patent number: 10361433
    Abstract: A positive electrode active material for a nonaqueous electrolyte secondary battery contains lithium nickel cobalt zinc composite oxide represented by general formula (1): LiwNi1-x-y-zCoxZnyMzO2 (0.95?w?1.10, 0.05?x?0.3, 0.005?y?0.08, and 0?z?0.3, where M is at least one metal element selected from the group consisting of Mg, Al, Ti, Mn, Fe, and Cu), wherein the lithium nickel cobalt zinc composite oxide has a form of secondary particles each corresponding to an aggregation of primary particles of hexagonal lithium-containing composite oxide with a layered structure, contains zinc oxide on at least a part of a surface of the primary particles and/or a surface of the secondary particles, and has a (003)-plane crystallite diameter of 100 nm or larger and 160 nm or smaller, the diameter being obtained by X-ray diffraction and the Scherrer equation.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: July 23, 2019
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Koji Yamaji, Ryozo Ushio, Takehide Honma, Satoshi Yoshio
  • Patent number: 10297825
    Abstract: Disclose herein are processes for producing a nickel cobalt aluminum composite hydroxide and producing a positive electrode active material for non-aqueous electrolyte secondary batteries. Nucleation is performed by controlling an aqueous solution for nucleation containing a nickel-containing metal compound, cobalt-containing metal compound, ammonium ion supplier, and aluminum source so that the aqueous solution's pH for nucleation is 12.0 to 13.4, and then in a particle growth step, particle growth is performed in an aqueous solution for particle growth obtained by controlling the aqueous solution for nucleation obtained in the nucleation step so that the pH of aqueous solution for nucleation is 10.5 to 12.0. Further, in nucleation step, an aqueous solution containing aluminum and sodium is used as the aluminum source contained in aqueous solution for nucleation, and the mole ratio of sodium to aluminum in aqueous solution containing aluminum and sodium is adjusted to 1.5 to 3.0.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: May 21, 2019
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kazuomi Ryoshi, Koji Yamaji, Kensaku Mori
  • Patent number: 10236507
    Abstract: The object of the present invention is to improve the roundness of nickel-manganese composite hydroxide particles obtained by a crystallization process, and to improve the filling characteristic of cathode active material produced using the nickel-manganese composite hydroxide particles as a precursor. A reaction aqueous solution is formed by supplying a raw material aqueous solution including at least Ni and Mn, an aqueous solution including an ammonium-ion donor, and an alkali solution into a reaction tank, and mixing, then nickel-manganese composite hydroxide particles are crystallized. When doing this, the oxygen concentration inside the reaction tank is controlled to be 3.0% by volume or greater, the temperature of the reaction aqueous solution is controlled to be 35° C. to 60° C., and the nickel-ion concentration is controlled to be 1,000 mg/L or greater.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: March 19, 2019
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Koji Yamaji, Takehide Honma, Ryozo Ushio
  • Publication number: 20190036112
    Abstract: A positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof that are able to improve the stability of positive electrode mixture material pastes used to produce nonaqueous electrolyte secondary batteries, as well as to improve the output characteristics and charge/discharge cycle characteristics of secondary batteries. A method for producing a positive electrode active material for nonaqueous electrolyte secondary batteries includes mixing a fired powder formed of a lithium-metal composite oxide having a layered crystal structure, a first compound which is at least one selected from a group consisting of a lithium-free oxide, a hydrate of the oxide, and a lithium-free inorganic acid salt, and water and drying a mixture resulting from the mixing. The fired powder includes secondary particles formed by agglomeration of primary particles. The first compound reacts with lithium ions in the presence of water to form a second compound including lithium.
    Type: Application
    Filed: September 30, 2016
    Publication date: January 31, 2019
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Taira Aida, Jiro Okada, Tetsufumi Komukai, Koji Yamaji, Ryozo Ushio
  • Publication number: 20180338432
    Abstract: The present invention provides a granular agrochemical composition capable of reducing the risk of occurrence of chemical injury and capable of saving the labor, and a method for spraying the granular agrochemical composition. The granular agrochemical composition containing an agrochemical active component is used being mixed with rice seeds and sprayed upon sowing, and the composition having a short diameter of 50 to 320% of the width of the rice seeds, a long diameter of 50 to 230% of the length of the rice seeds, and a specific gravity of 1 to 4 g/cm3. The method and the like for spraying the granular agrochemical composition, including: a mixing step of mixing the granular agrochemical composition with rice seeds; and a spraying step of spraying the mixture obtained in the mixing step.
    Type: Application
    Filed: October 20, 2016
    Publication date: November 29, 2018
    Applicant: KUMIAI CHEMICAL INDUSTRY CO., LTD.
    Inventors: Satoshi WATANABE, Yoshitaka FUJIHIRA, Koji YAMAJI, Shigeki FUJITA
  • Publication number: 20180331358
    Abstract: A positive electrode active material for a nonaqueous electrolyte secondary battery contains lithium nickel cobalt zinc composite oxide represented by general formula (1): LiwNi1-x-y-zCoxZnyMzO2(0.95?w?1.10, 0.05?x?0.3, 0.005?y?0.08, and 0?z?0.3, where M is at least one metal element selected from the group consisting of Mg, Al, Ti, Mn, Fe, and Cu), wherein the lithium nickel cobalt zinc composite oxide has a form of secondary particles each corresponding to an aggregation of primary particles of hexagonal lithium-containing composite oxide with a layered structure, contains zinc oxide on at least a part of a surface of the primary particles and/or a surface of the secondary particles, and has a (003)-plane crystallite diameter of 100 nm or larger and 160 nm or smaller, the diameter being obtained by X-ray diffraction and the Scherrer equation.
    Type: Application
    Filed: November 13, 2015
    Publication date: November 15, 2018
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Koji Yamaji, Ryozo Ushio, Takehide Honma, Satoshi Yoshio
  • Patent number: 10084188
    Abstract: A positive electrode active material is provided that has a high capacity, a low irreversible capacity, an excellent initial charge/discharge efficiency, and excellent rate characteristics. This positive electrode active material comprises a hexagonal lithium nickel complex oxide having a layer structure and represented by the general formula LixNi1?y?zCoyMzO2 (0.98?x?1.04, 0.25?y?0.40, 0?z?0.07, and M is at least one element selected from Al, Ti, Mn, Ga, Mg, and Nb), wherein a lithium occupancy rate in a lithium main layer as obtained by Rietveld analysis from the x-ray diffraction pattern is at least 98.7%, and a crystallite diameter as calculated from the peak for the (003) plane in x-ray diffraction is 50 to 300 nm.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: September 25, 2018
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kensaku Mori, Masanori Takagi, Koji Yamaji, Takehide Honma, Ryozo Ushio
  • Publication number: 20180261873
    Abstract: An object of the present invention is to provide a positive electrode material for a nonaqueous electrolyte secondary battery, which is capable of inhibiting the gelation of a positive electrode composite material paste without decreasing the charge and discharge capacity and the output characteristics, when used as a positive electrode material for batteries. The positive electrode active material for a nonaqueous electrolyte secondary battery comprises a mixture containing a lithium metal composite oxide represented by a general formula LiaNi1-x-y-zCoxMnyMzO2 (wherein, 0.03?x?0.35, 0?y?0.35, 0?z?0.05, 0.97?a?1.30, and M is at least one type of element selected from V, Fe, Cu, Mg, Mo, Nb, Ti, Zr, W and Al) and an ammonium tungstate powder, wherein when 5 g of the positive electrode material is mixed with 100 ml of pure water, the mixture is stirred for 10 minutes and then left to stand for 30 minutes, and then the pH of a supernatant fluid at 25° C. was measured, the pH ranges from 11.2 to 11.8.
    Type: Application
    Filed: October 31, 2016
    Publication date: September 13, 2018
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Koji YAMAJI, Taira AIDA, Ryozo USHIO
  • Publication number: 20180215629
    Abstract: Provided is a cathode active material for a non-aqueous electrolyte secondary battery that improves the cycling characteristic and high-temperature storability without impairing the charge/discharge capacity and the output characteristics. A nickel cobalt containing composite hydroxide is obtained by using a batch type crystallization method in which a raw material aqueous solution that includes Ni, Co and Mg is supplied in an inert atmosphere to a reaction aqueous solution that is controlled so that the temperature is within the range 45° C. to 55° C., the pH value is within the range 10.8 to 11.8 at a reference liquid temperature of 25° C., and the ammonium-ion concentration is within the range 8 g/L to 12 g/L. An Al-coated composite hydroxide that is expressed by the general formula: Ni1-x-y-zCoxAlyMgz(OH)2 (where, 0.05?x?0.20, 0.01?y?0.06, and 0.01?z?0.
    Type: Application
    Filed: April 27, 2016
    Publication date: August 2, 2018
    Inventors: Takehide HONMA, Koji YAMAJI, Ryozo USHIO
  • Publication number: 20180090759
    Abstract: Purpose of the present invention is to provide a positive electrode active material for non-aqueous electrolyte secondary battery with high heat stability, and also, capable of achieving high capacity when used as the positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the positive electrode active material, and a process for producing the positive electrode active material for non-aqueous electrolyte secondary battery.
    Type: Application
    Filed: September 15, 2017
    Publication date: March 29, 2018
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Jun SUZUKI, Koji YAMAJI
  • Publication number: 20170309911
    Abstract: Disclose herein are processes for producing a nickel cobalt aluminum composite hydroxide and producing a positive electrode active material for non-aqueous electrolyte secondary batteries. Nucleation is performed by controlling an aqueous solution for nucleation containing a nickel-containing metal compound, cobalt-containing metal compound, ammonium ion supplier, and aluminum source so that the aqueous solution's pH for nucleation is 12.0 to 13.4, and then in a particle growth step, particle growth is performed in an aqueous solution for particle growth obtained by controlling the aqueous solution for nucleation obtained in the nucleation step so that the pH of aqueous solution for nucleation is 10.5 to 12.0. Further, in nucleation step, an aqueous solution containing aluminum and sodium is used as the aluminum source contained in aqueous solution for nucleation, and the mole ratio of sodium to aluminum in aqueous solution containing aluminum and sodium is adjusted to 1.5 to 3.0.
    Type: Application
    Filed: October 20, 2015
    Publication date: October 26, 2017
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kazuomi RYOSHI, Koji YAMAJI, Kensaku MORI
  • Publication number: 20170012288
    Abstract: The object of the present invention is to improve the roundness of nickel-manganese composite hydroxide particles obtained by a crystallization process, and to improve the filling characteristic of cathode active material produced using the nickel-manganese composite hydroxide particles as a precursor. A reaction aqueous solution is formed by supplying a raw material aqueous solution including at least Ni and Mn, an aqueous solution including an ammonium-ion donor, and an alkali solution into a reaction tank, and mixing, then nickel-manganese composite hydroxide particles are crystallized. When doing this, the oxygen concentration inside the reaction tank is controlled to be 3.0% by volume or greater, the temperature of the reaction aqueous solution is controlled to be 35° C. to 60° C., and the nickel-ion concentration is controlled to be 1,000 mg/L or greater.
    Type: Application
    Filed: January 29, 2015
    Publication date: January 12, 2017
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Koji YAMAJI, Takehide HONMA, Ryozo USHIO
  • Publication number: 20150188136
    Abstract: A positive electrode active material is provided that has a high capacity, a low irreversible capacity, an excellent initial charge/discharge efficiency, and excellent rate characteristics. This positive electrode active material comprises a hexagonal lithium nickel complex oxide having a layer structure and represented by the general formula LixNi1-y-zCoyMzO2 (0.98?x?1.04, 0.25?y?0.40, 0?z?0.07, and M is at least one element selected from Al, Ti, Mn, Ga, Mg, and Nb), wherein a lithium occupancy rate in a lithium main layer as obtained by Rietveld analysis from the x-ray diffraction pattern is at least 98.7%, and a crystallite diameter as calculated from the peak for the (003) plane in x-ray diffraction is 50 to 300 nm.
    Type: Application
    Filed: July 1, 2013
    Publication date: July 2, 2015
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kensaku Mori, Masanori Takagi, Koji Yamaji, Takehide Honma, Ryozo Ushio
  • Patent number: 7094592
    Abstract: The present invention relates to a novel strain of Bacillus sp. D747 (deposited as FERM BP-8234) and methods for controlling plant diseases and insect pests, comprising administering cultures of Bacillus sp. D747 (including the viable bacteria) or viable bacteria isolated by culturing, on the plant parts such as roots, stems, leaves, seeds, and the like, or in the culture soil.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: August 22, 2006
    Assignee: Kumiai Chemical Industry Co., Ltd.
    Inventors: Satoshi Watanabe, Jun Toyoshima, Tsutomu Shimizu, Koji Yamaji, Kozo Nagayama, Hiroyuki Yano