Patents by Inventor Konrad Kulikowski

Konrad Kulikowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140265555
    Abstract: Described herein are improved capabilities for a system and method for wireless energy distribution across a vehicle compartment of defined area, comprising a source resonator coupled to an energy source of a vehicle and generating an oscillating magnetic field with a frequency, and at least one repeater resonator positioned along the vehicle compartment, the at least one repeater resonator positioned in proximity to the source resonator, the at least one repeater resonator having a resonant frequency and comprising a high-conductivity material adapted and located between the at least one repeater resonator and a vehicle surface to direct the oscillating magnetic field away from the vehicle surface, wherein the at least one repeater resonator provides an effective wireless energy transfer area within the defined area.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: WITRICITY CORPORATION
    Inventors: Katherine L. Hall, Konrad Kulikowski, Morris P. Kesler, Andre B. Kurs, Steve J. Ganem, David A. Schatz, Eric R. Giler
  • Publication number: 20140049118
    Abstract: Described herein are systems, devices, and methods for a wireless energy transfer source that can support multiple wireless energy transfer techniques. A wireless energy source is configured to support wireless energy transfer techniques without requiring separate independent hardware for each technique. An amplifier is used to energize different energy transfer elements tuned for different frequencies. The impendence of each energy transfer element is configured such that only some of the energy transfer elements is active at a time. The different energy transfer elements and energy transfer techniques may be selectively activated using an amplifier without using active switches to select or activate different coils and/or resonators.
    Type: Application
    Filed: October 25, 2013
    Publication date: February 20, 2014
    Inventors: Aristeidis Karalis, Simon Verghese, Nathan Andrew Pallo, Morris P. Kesler, Konrad Kulikowski, Alexander P. McCauley, Andre B. Kurs
  • Patent number: 8461719
    Abstract: Described herein are improved capabilities for a source resonator having a Q-factor Q1>100 and a characteristic size x1 coupled to an energy source, and a second resonator having a Q-factor Q2>100 and a characteristic size x2 coupled to an energy drain located a distance D from the source resonator, where the source resonator and the second resonator are coupled to exchange energy wirelessly among the source resonator and the second resonator.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: June 11, 2013
    Assignee: WiTricity Corporation
    Inventors: Morris P. Kesler, Aristeidis Karalis, Andre B. Kurs, Andrew J. Campanella, Ron Fiorello, Qiang Li, Konrad Kulikowski, Eric R. Giler, Frank J. Pergal, David A. Schatz, Katherine L. Hall, Marin Soljacic
  • Patent number: 8441154
    Abstract: A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply and a second electromagnetic resonator coupled to at least one of a power supply and the first electromagnetic resonator. The mobile wireless receiver includes a load associated with an outdoor lighting unit that draws energy from the load to power a light source associated with the outdoor lighting unit, and a third electromagnetic resonator configured to be coupled to the load and movable relative to at least one of the first electromagnetic resonator and the second electromagnetic resonator, wherein the third resonator is configured to be wirelessly coupled to at least one of the first electromagnetic resonator and the second electromagnetic resonator to provide resonant, non-radiative wireless power to the third electromagnetic resonator from at least one of the first electromagnetic resonator and the second electromagnetic resonator.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: May 14, 2013
    Assignee: WiTricity Corporation
    Inventors: Aristeidis Karalis, Andre B. Kurs, Andrew J. Campanella, David A. Schatz, Herbert Toby Lou, Morris P. Kesler, Katherine L. Hall, Konrad Kulikowski, Eric R. Giler, Ron Fiorello, Marin Soljacic
  • Publication number: 20130057364
    Abstract: An enclosed resonator includes a generally planar plate having a top side and a bottom side wherein a pocket is recessed into the bottom side to produce a bottom surface and a periphery around the rectangular pocket including a first pair of parallel sides and a second pair of parallel sides, a plurality of generally parallel channels formed into the top side each channel extending generally in a direction of the second pair of parallel sides, a first plurality of holes extending along a first side of the first pair of parallel sides each hole extending from the bottom side to one of the plurality of generally parallel channels, a second plurality of holes extending along a second side of the first pair of parallel sides each hole extending from the bottom side to one of the plurality of generally parallel channels.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 7, 2013
    Applicant: WITRICITY CORPORATION
    Inventors: Morris P. Kesler, Konrad Kulikowski, Katherine L. Hall, Andre B. Kurs
  • Publication number: 20120248981
    Abstract: A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply and a second electromagnetic resonator coupled to at least one of a power supply and the first electromagnetic resonator. The mobile wireless receiver includes a load associated with a movable lighting unit, the load adapted to provide electrical energy to the lighting unit, and a third electromagnetic resonator configured to be coupled to the load and movable relative to at least one of the first electromagnetic resonator and the second electromagnetic resonator, wherein the third resonator is configured to be wirelessly coupled to at least one of the first electromagnetic resonator and the second electromagnetic resonator to provide resonant, non-radiative wireless power to the third electromagnetic resonator from at least one of the first electromagnetic resonator and the second electromagnetic resonator.
    Type: Application
    Filed: October 28, 2011
    Publication date: October 4, 2012
    Inventors: Aristeidis Karalis, Andre B. Kurs, Andrew J. Campanella, David A. Schatz, Morris P. Kesler, Katherine L. Hall, Konrad Kulikowski, Eric R. Giler, Marin Soljacic
  • Publication number: 20120242225
    Abstract: A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply and a second electromagnetic resonator coupled to at least one of a power supply and the first electromagnetic resonator. The mobile wireless receiver includes a load associated with an outdoor lighting unit that draws energy from the load to power a light source associated with the outdoor lighting unit, and a third electromagnetic resonator configured to be coupled to the load and movable relative to at least one of the first electromagnetic resonator and the second electromagnetic resonator, wherein the third resonator is configured to be wirelessly coupled to at least one of the first electromagnetic resonator and the second electromagnetic resonator to provide resonant, non-radiative wireless power to the third electromagnetic resonator from at least one of the first electromagnetic resonator and the second electromagnetic resonator.
    Type: Application
    Filed: October 28, 2011
    Publication date: September 27, 2012
    Inventors: Aristeidis Karalis, Andre B. Kurs, Andrew J. Campanella, David A. Schatz, Herbert Toby Lou, Morris P. Kesler, Katherine L. Hall, Konrad Kulikowski, Eric R. Giler, Ron Fiorello, Marin Soljacic
  • Publication number: 20120242159
    Abstract: A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply and a second electromagnetic resonator coupled to at least one of a power supply and the first electromagnetic resonator. The mobile wireless receiver includes a load associated with electrically powering an appliance, and a third electromagnetic resonator configured to be coupled to the load and movable relative to at least one of the first electromagnetic resonator and the second electromagnetic resonator, wherein the third resonator is configured to be wirelessly coupled to at least one of the first electromagnetic resonator and the second electromagnetic resonator to provide resonant, non-radiative wireless power to the third electromagnetic resonator from at least one of the first electromagnetic resonator and the second electromagnetic resonator.
    Type: Application
    Filed: October 28, 2011
    Publication date: September 27, 2012
    Inventors: Herbert Toby Lou, Konrad Kulikowski, David A. Schatz, Eric R. Giler, Katherine L. Hall, Morris P. Kesler, Ron Fiorello, Aristeidis Karalis, Andre B. Kurs, Marin Soljacic, Andrew J. Campanella
  • Publication number: 20120235503
    Abstract: A medical device-powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply includes a load configured to power the medical device using electrical power, and a second electromagnetic resonator adapted to be housed within the medical device and configured to be coupled to the load, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator; wherein the square root of the product of the respective Q factors is greater than 100; and an authorization facility to confirm compatibility of the resonators and provide authorization for initiation of transfer of power.
    Type: Application
    Filed: November 7, 2011
    Publication date: September 20, 2012
    Inventors: Morris P. Kesler, Katherine L. Hall, Aristeidis Karalis, Andre B. Kurs, Marin Soljacic, Konrad Kulikowski, Andrew J. Campanella
  • Publication number: 20120235505
    Abstract: A bag for wireless energy transfer comprising a compartment for storing an electronic device enabled for wireless energy transfer, and at least one magnetic resonator positioned for wireless energy transfer to the electronic device, wherein a the at least one magnetic resonator optionally operates in one of three modes: (1) as a repeater resonator to extend the energy transfer to the electronic device from an external wireless energy source, (2) as a source resonator transferring energy from a battery in the bag to the electronic device, and (3) as an energy capture resonator receiving wireless energy from an external source to recharge a battery in the bag.
    Type: Application
    Filed: February 8, 2012
    Publication date: September 20, 2012
    Inventors: David A. Schatz, Katherine L. Hall, Morris P. Kesler, Andre B. Kurs, Konrad Kulikowski
  • Publication number: 20120235633
    Abstract: A medical device-powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver including a load is configured to power the medical device using electrical power, and a second electromagnetic resonator adapted to be housed within the medical device and configured to be coupled to the load, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator, the area circumscribed by the inductive element of at least one of the electromagnetic resonators can be varied to improve performance.
    Type: Application
    Filed: October 21, 2011
    Publication date: September 20, 2012
    Inventors: Morris P. Kesler, Katherine L. Hall, Konrad Kulikowski, Aristeidis Karalis, Andre B. Kurs, Marin Soljacic, Andrew J. Campanella, Volkan Efe
  • Publication number: 20120239117
    Abstract: A medical device-powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver includes a load configured to power the medical device using electrical power, and a second electromagnetic resonator adapted to be housed within the medical device and configured to be coupled to the load, at least one other electromagnetic resonator configured with the first electromagnetic resonator and the second electromagnetic resonator in an array of electromagnetic resonators to distribute power over an area, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the array to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator.
    Type: Application
    Filed: October 21, 2011
    Publication date: September 20, 2012
    Inventors: Morris P. Kesler, Katherine L. Hall, Andrew J. Campanella, Aristeidis Karalis, Andre B. Kurs, Marin Soljacic, Konrad Kulikowski
  • Publication number: 20120235634
    Abstract: A medical device-powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver includes a load configured to power an implantable medical device using electrical power, and a second electromagnetic resonator adapted to be housed within the medical device and configured to be coupled to the load, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator, the area circumscribed by the inductive element of at least one of the electromagnetic resonators can be varied to improve performance.
    Type: Application
    Filed: October 21, 2011
    Publication date: September 20, 2012
    Inventors: Katherine L. Hall, Volkan Efe, Morris P. Kesler, Andrew J. Campanella, Aristeidis Karalis, Andre B. Kurs, Marin Soljacic, Konrad Kulikowski
  • Publication number: 20120223573
    Abstract: Described herein are improved configurations for a wireless power transfer for electronic devices. In embodiments reconfigurable or flexible attachment between a source and a device is realized using permanent magnets or electromagnets. Magnetic material may be positioned on or around one or more of the resonator to provide for locations for attaching permanent magnets. A permanent magnet attached to or near one of a source or device or repeater resonators may be used to flexibly attach to the non-lossy magnetic material of another resonator structure. In embodiments, replacing lossy permanent magnets and/or electromagnets in even one of the resonators of a wireless power system may be advantageous to system performance.
    Type: Application
    Filed: January 30, 2012
    Publication date: September 6, 2012
    Inventors: David A. Schatz, Herbert T. Lou, Morris P. Kesler, Katherine L. Hall, Konrad Kulikowski, Eric R. Giler, Ron Fiorello
  • Publication number: 20120119576
    Abstract: A vehicle powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver including a load configured to power the drive system of a vehicle using electrical power, a second electromagnetic resonator adapted to be housed upon the vehicle and configured to be coupled to the load, a safety system for to provide protection with respect to an object that may become hot during operation of the first electromagnetic resonator. The safety system including a detection subsystem configured to detect the presence of the object in substantial proximity to at least one of the resonators, and a notification subsystem operatively coupled to the detection subsystem and configured to provide an indication of the object, wherein the second resonator is configured to be wirelessly coupled to the first resonator to provide resonant, non-radiative wireless power to the second resonator from the first resonator.
    Type: Application
    Filed: October 18, 2011
    Publication date: May 17, 2012
    Inventors: Morris P. Kesler, Konrad Kulikowski, Herbert Toby Lou, Katherine L. Hall, Ron Fiorello, Simon Verghese, Andre B. Kurs, Aristeidis Karalis, Andrew J. Campanella
  • Publication number: 20120119569
    Abstract: A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply and a second electromagnetic resonator coupled to at least one of a power supply and the first electromagnetic resonator. The mobile wireless receiver includes a load associated with an electrically powered system that is disposed interior to a vehicle, and a third electromagnetic resonator configured to be coupled to the load and movable relative to at least one of the first electromagnetic resonator and the second electromagnetic resonator, wherein the third resonator is configured to be wirelessly coupled to at least one of the first electromagnetic resonator and the second electromagnetic resonator to provide resonant, non-radiative wireless power to the third electromagnetic resonator from at least one of the first electromagnetic resonator and the second electromagnetic resonator.
    Type: Application
    Filed: October 17, 2011
    Publication date: May 17, 2012
    Inventors: Aristeidis Karalis, Andre B. Kurs, Andrew J. Campanella, David A. Schatz, Morris P. Kesler, Katherine L. Hall, Konrad Kulikowski, Eric Giler, Ron Fiorello, Marin Soljacic
  • Publication number: 20120112534
    Abstract: A vehicle powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver includes a load configured to power the drive system of a vehicle using electrical power, and a second electromagnetic resonator adapted to be housed upon the vehicle and configured to be coupled to the load, at least one other electromagnetic resonator configured with the first electromagnetic resonator and the second electromagnetic resonator in an array of electromagnetic resonators to distribute power over an area, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the array to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator.
    Type: Application
    Filed: October 17, 2011
    Publication date: May 10, 2012
    Inventors: Morris P. Kesler, Katherine L. Hall, Ron Fiorello, Michael Alan Feldstein, Volkan Efe, Konrad Kulikowski, Andre B. Kurs
  • Publication number: 20120112691
    Abstract: A vehicle powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver includes a load configured to power the drive system of a vehicle using electrical power, and a second electromagnetic resonator adapted to be housed upon the vehicle and configured to be coupled to the load, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator, and wherein the frequency of at least one electromagnetic resonator is selected to prevent transfer of power to unauthorized devices.
    Type: Application
    Filed: October 18, 2011
    Publication date: May 10, 2012
    Inventors: Andre B. Kurs, Aristeidis Karalis, Marin Soljacic, Morris P. Kesler, Konrad Kulikowski, Katherine L. Hall
  • Publication number: 20120112531
    Abstract: A vehicle powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply includes a load configured to power the drive system of a vehicle using electrical power, a second electromagnetic resonator adapted to be housed upon the vehicle and configured to be coupled to the load, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator; and an authorization facility to confirm compatibility of the resonators and provide authorization for initiation of transfer of power.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 10, 2012
    Inventors: Morris P. Kesler, Andre B. Kurs, Aristeidis Karalis, Marin Soljacic, Katherine L. Hall, Andrew J. Campanella, Konrad Kulikowski
  • Publication number: 20120091819
    Abstract: A wireless power source includes a computer display comprising a planar source resonator configured to receive power from the display, wherein the source resonator generates an oscillating magnetic field in a region surrounding the display when the display is powered on, and the source resonator delivers useful power to at least one device resonator in the region surrounding the display.
    Type: Application
    Filed: October 6, 2011
    Publication date: April 19, 2012
    Inventors: Konrad Kulikowski, Qiang Li, Andre B. Kurs, Andrew J. Campanella, Katherine L. Hall, Aristeidis Karalis, Morris P. Kesler, Marin Soljacic, Eric G. Giler, David Schatz