Patents by Inventor Konstantin A. Filippenko

Konstantin A. Filippenko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220396168
    Abstract: A method, apparatus and computer program product resolve the problem of unbalanced loads in an EVSE cluster of multiple EVSE charging stations. A signal is provided to the EVSEs identifying which phase of the three-phase power source has the highest current. When one of the EVSEs in the cluster determines whether it is connected to an EV's on board charging device, determines whether it is already charging the connected EV, and determines whether the EVSE is using the phase that has the highest current, then the EVSE may transmit a cluster load balancing control signal as a control pilot signal to the EV's onboard charging device to adjust the charging rate of the current that the EV is consuming from the EVSE.
    Type: Application
    Filed: August 22, 2022
    Publication date: December 15, 2022
    Applicant: Schneider Electric USA, Inc.
    Inventors: Kevin M. JEFFERIES, Benjamin W. EDWARDS, Matthew L. White, Konstantin A. FILIPPENKO, Richard K. WEILER
  • Patent number: 11447027
    Abstract: A method, apparatus and computer program product resolve the problem of unbalanced loads in an EVSE cluster of multiple EVSE charging stations. A signal is provided to the EVSEs identifying which phase of the three-phase power source has the highest current. When one of the EVSEs in the cluster determines whether it is connected to an EV's on board charging device, determines whether it is already charging the connected EV, and determines whether the EVSE is using the phase that has the highest current, then the EVSE may transmit a cluster load balancing control signal as a control pilot signal to the EV's onboard charging device to adjust the charging rate of the current that the EV is consuming from the EVSE.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: September 20, 2022
    Assignee: Schneider Electric USA, Inc.
    Inventors: Kevin M. Jefferies, Benjamin W. Edwards, Matthew L. White, Konstantin A. Filippenko, Richard K. Weiler
  • Patent number: 11366142
    Abstract: A measurement module receives crosstalk compensation factors that include distance factors based on respective distances of a current sensor of the module from respective current sensors of other measurement modules and phase difference factors based on respective differences between the phase of a source current measured by the module and respective phases of source currents measured by the other modules. The module monitors messages reporting current measurements transmitted from the other modules connected to a broadcast bus, of current measurements made by respective current sensors of the other modules measuring other respective source currents. The module determines a reported current that is computed as a function of current measurement by the module's current sensor, reported current measurements monitored from the other modules, and the received crosstalk compensation factors. The module transmits the determined reported current over the broadcast bus to the other modules and a central controller.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: June 21, 2022
    Assignee: Schneider Electric USA, Inc.
    Inventors: Kevin M. Jefferies, Benjamin W. Edwards, Richard K. Weiler, Alan Freeman, Konstantin Filippenko
  • Publication number: 20220006407
    Abstract: Techniques for managing a distributed control system for a motor control switch are described. A request to implement a first controller for a motor control switch is received. Embodiments determine a plurality of functional modules for the first controller. Each of the plurality of functional modules comprises an instance of computer logic configured to perform a respective function. A respective Motor Control Function Set (MCFS) for performing the respective function of each of the plurality of functional modules is determined. One or more of a plurality of configurable hardware blocks are allocated to each of the plurality of functional modules. Embodiments configure each of the plurality of configurable hardware blocks based on the MCFS of the functional module to which the respective configurable hardware block is allocated. The configured plurality of configurable hardware blocks is executed as a distributed system to control the motor control switch.
    Type: Application
    Filed: November 8, 2019
    Publication date: January 6, 2022
    Applicant: Schneider Electric USA, Inc.
    Inventors: Benjamin W. EDWARDS, Kevin M. JEFFERIES, Gerald B. CARSON, Konstantin A. FILIPPENKO, Christian PILLOT
  • Publication number: 20210156895
    Abstract: A measurement module receives crosstalk compensation factors that include distance factors based on respective distances of a current sensor of the module from respective current sensors of other measurement modules and phase difference factors based on respective differences between the phase of a source current measured by the module and respective phases of source currents measured by the other modules. The module monitors messages reporting current measurements transmitted from the other modules connected to a broadcast bus, of current measurements made by respective current sensors of the other modules measuring other respective source currents. The module determines a reported current that is computed as a function of current measurement by the module's current sensor, reported current measurements monitored from the other modules, and the received crosstalk compensation factors. The module transmits the determined reported current over the broadcast bus to the other modules and a central controller.
    Type: Application
    Filed: November 22, 2019
    Publication date: May 27, 2021
    Applicant: Schneider Electric USA, Inc.
    Inventors: Kevin M. JEFFERIES, Benjamin W. EDWARDS, Richard K. WEILER, Alan FREEMAN, Konstantin FILIPPENKO
  • Publication number: 20210016675
    Abstract: A method, apparatus and computer program product resolve the problem of unbalanced loads in an EVSE cluster of multiple EVSE charging stations. A signal is provided to the EVSEs identifying which phase of the three-phase power source has the highest current. When one of the EVSEs in the cluster determines whether it is connected to an EV's on board charging device, determines whether it is already charging the connected EV, and determines whether the EVSE is using the phase that has the highest current, then the EVSE may transmit a cluster load balancing control signal as a control pilot signal to the EV's onboard charging device to adjust the charging rate of the current that the EV is consuming from the EVSE.
    Type: Application
    Filed: July 19, 2019
    Publication date: January 21, 2021
    Applicant: Schneider Electric USA, Inc.
    Inventors: Kevin M. JEFFERIES, Benjamin W. EDWARDS, Matthew L. WHITE, Konstantin A. FILIPPENKO, Richard K. WEILER
  • Patent number: 10797452
    Abstract: An electrical device includes a housing that is intended to be mounted on a rail, and a monitoring and/or control module including a printed circuit board. In the configuration in which the electrical device is mounted on the rail, at least one ground terminal of the printed circuit board is permanently electrically connected to the rail by elastic mechanical bearing on and direct electrical contact with a connecting element, itself elastically mechanically bearing on and making direct electrical contact with the rail or with an elastic blocking member for elastically blocking the housing on the rail.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: October 6, 2020
    Assignee: Schneider Electric Industries SAS
    Inventors: Jean-Luc Bouchard, Konstantin Filippenko, Stephane Lacroix
  • Publication number: 20190296508
    Abstract: An electrical device includes a housing that is intended to be mounted on a rail, and a monitoring and/or control module including a printed circuit board. In the configuration in which the electrical device is mounted on the rail, at least one ground terminal of the printed circuit board is permanently electrically connected to the rail by elastic mechanical bearing on and direct electrical contact with a connecting element, itself elastically mechanically bearing on and making direct electrical contact with the rail or with an elastic blocking member for elastically blocking the housing on the rail.
    Type: Application
    Filed: March 20, 2019
    Publication date: September 26, 2019
    Applicant: Schneider Electric Industries SAS
    Inventors: Jean-Luc BOUCHARD, Konstantin Filippenko, Stephane Lacroix
  • Patent number: 10059211
    Abstract: An electric vehicle supply equipment includes EVSE control electronics, an EV connector and an HMI circuit, the HMI circuit including a proximity input terminal configured to receive a proximity signal from an EV connector indicating a state of a handle button of the EV connector, a ground terminal, a current source input coupled between the proximity input terminal and the ground terminal, a comparator connected between the proximity input terminal and the ground terminal to provide an output representing a state of the handle button when the current source is activated by the control input and an output terminal to which the output of the comparator is connected, the output terminal being connected to the EVSE control electronics, wherein the state of the handle button is utilized as an input to the HMI circuit.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: August 28, 2018
    Assignee: Schneider Electric USA, Inc.
    Inventors: Kevin M. Jefferies, Benjamin W. Edwards, Matthew L. White, Konstantin A. Filippenko
  • Patent number: 9975443
    Abstract: A cable reel assembly in an electric vehicle supply equipment (EVSE) having a reel around which a cable is coiled. A shaft supporting the reel bears discs that rotate with the reel, and calipers coupled to the discs stop them and the reel from rotating. The power L1 and L2 conductors in the cable are electrically connected to the discs, and the calipers are electrically connected to the power source for the EVSE so that the calipers provide mechanical and electrical connection when actuated. Optionally, slip rings coupled to the shaft are connected to the control pilot and proximity signal conductors in the cable. Thus, during cable re traction, the control pilot and proximity signals are still provided to the EVSE, but the power conductors are decoupled from the power source. Only when the calipers are actuated to brake the discs is current flow permitted.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: May 22, 2018
    Assignee: Schneider Electric USA, Inc.
    Inventors: Kevin M. Jefferies, Benjamin W. Edwards, Matthew L. White, Konstantin A. Filippenko, Richard K. Weiler
  • Patent number: 9891607
    Abstract: The invention provides consistent settings between local and remote parameter adjustments of both local and remote HMI. A dial (4) is superimposed on a bistable display substrate (2), having an indicator (7) configured to be manually aligned with a displayed character representing a manual setting of a parameter value for controlling local equipment. A network interface (18) is connected over a communications network (17) to a remote HMI (16), configured to receive a new parameter value for controlling the local equipment (25). A controller (14) samples the current position of the indicator (7) of the dial (4), and provides a control input signal (20) to the bistable display substrate (2) to control a display of the new parameter value in the current position of the indicator (7) of the dial (4) and to provide the new parameter value to the local equipment (25).
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: February 13, 2018
    Assignee: Schneider Electric USA, Inc.
    Inventors: Kevin M. Jefferies, Benjamin W. Edwards, Matthew L. White, Konstantin A. Filippenko, Richard K. Weiler
  • Patent number: 9889760
    Abstract: A distributed energy management method and system 100 are disclosed for managing a charge rate of an array of EVSEs 140 that share a common power source. In the disclosed method and system, control of the power sharing is distributed at the individual EVSE level. For example, each EVSE includes a communication device 540 and a controller 530. The communication device is used to receive a signal relating to a present current capacity utilization of the shared circuit, such as an indication of availability or unavailability of current capacity on the shared circuit. The controller is configured to generate a variable update interval, and initiate adjustment of the charge rate of the EVSE according to the variable update interval based on the present current capacity utilization as indicated by the received signal.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: February 13, 2018
    Assignee: Schneider Electric USA, Inc.
    Inventors: Kevin M. Jefferies, Benjamin W. Edwards, Matthew L. White, Konstantin A. Filippenko, Richard K. Weiler
  • Patent number: 9804034
    Abstract: A circuit measures temperature in a charging handle 150 of an electric vehicle charging station (EVSE) 100. A temperature sensor is connected between a control pilot line 115 and ground line G in the charging handle of the EVSE. The control pilot line transmits a square wave signal CP having positive and negative portions, to an electric vehicle, according to the SAE J1772 standard. A temperature monitor 300 in the EVSE, coupled to a pilot signal measurement circuit 230 in the EVSE, measures the negative portions of the square wave signal resulting from the temperature sensor conducting current in response to changes in temperature in the handle. Temperature measurement of the charging handle is achieved without significant added cost or complexity, by reusing existing components in the EVSE, with little or no modification required to EVSE electronics, and minimal modification of the handle.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: October 31, 2017
    Assignee: Schneider Electric USA, Inc.
    Inventors: Kevin M. Jefferies, Benjamin W. Edwards, Matthew L. White, Konstantin A. Filippenko, Richard K. Weiler
  • Patent number: 9707850
    Abstract: A temperature sensor 120 automatically shuts down charging operations in response to a temperature increase in a charging handle 150 of an electric vehicle charging station 100. The temperature sensor is connected between a ground conductor and a high voltage conductor L1 in the charging handle. The charging handle includes a return conductor L2/N. The temperature sensor includes a thermistor R1-NTC that changes its resistance in response to an increase in temperature in the charging handle. A portion of current in the high voltage conductor is diverted to the ground conductor, instead of the return conductor, in response to the thermistor sensing a temperature increase, thereby causing a ground fault detector 160 to trip in the charging station.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: July 18, 2017
    Assignee: SCHNEIDER ELECTRIC USA, INC.
    Inventors: Kevin M. Jefferies, Benjamin W. Edwards, Matthew L. White, Konstantin A. Filippenko, Richard K. Weiler
  • Patent number: 9573478
    Abstract: An add-on adapter 110 enables a single charging port 102 of an electric vehicle charging station 100 to simultaneously charge two electric vehicles. An adapter controller 120 determines the available charging rate offered by the charging station. Electric vehicle charging handles 150A, 150B are determined to be connected to the electric vehicles. A charge sharing control circuit 300 in the adapter controller, determines modified available charging rates to be offered for simultaneously charging the electric vehicles. The modified available charging rates are based on the connection states of the electric vehicles and the available charging rate offered by the charging station. The adapter controller controls two contactors 130A, 130B to switchably connect a charging station power socket to the electric vehicle charging handles, to provide shared power at the determined modified available charging rate to the electric vehicles, for simultaneous charging.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: February 21, 2017
    Assignee: Schneider Electric USA, Inc.
    Inventors: Kevin M. Jefferies, Benjamin W. Edwards, Matthew L. White, Konstantin A. Filippenko, Richard K. Weiler
  • Publication number: 20160280092
    Abstract: A distributed energy management method and system 100 are disclosed for managing a charge rate of an array of EVSEs 140 that share a common power source. In the disclosed method and system, control of the power sharing is distributed at the individual EVSE level. For example, each EVSE includes a communication device 540 and a controller 530. The communication device is used to receive a signal relating to a present current capacity utilization of the shared circuit, such as an indication of availability or unavailability of current capacity on the shared circuit. The controller is configured to generate a variable update interval, and initiate adjustment of the charge rate of the EVSE according to the variable update interval based on the present current capacity utilization as indicated by the received signal.
    Type: Application
    Filed: December 6, 2013
    Publication date: September 29, 2016
    Applicant: SCHNEIDER ELECTRIC USA, INC.
    Inventors: Kevin M. JEFFERIES, Benjamin W. EDWARDS, Matthew L. WHITE, Konstantin A. FILIPPENKO, Richard K. WEILER
  • Publication number: 20160216702
    Abstract: The invention provides consistent settings between local and remote parameter adjustments of both local and remote HMI. A dial (4) is superimposed on a bistable display substrate (2), having an indicator (7) configured to be manually aligned with a displayed character representing a manual setting of a parameter value for controlling local equipment. A network interface (18) is connected over a communications network (17) to a remote HMI (16), configured to receive a new parameter value for controlling the local equipment (25). A controller (14) samples the current position of the indicator (7) of the dial (4), and provides a control input signal (20) to the bistable display substrate (2) to control a display of the new parameter value in the current position of the indicator (7) of the dial (4) and to provide the new parameter value to the local equipment (25).
    Type: Application
    Filed: September 30, 2013
    Publication date: July 28, 2016
    Applicant: SCHNEIDER ELECTRIC USA, INC.
    Inventors: Kevin M. JEFFERIES, Benjamin W. EDWARDS, Matthew L. WHITE, Konstantin A. FILIPPENKO, Richard K. WEILER
  • Publication number: 20160159231
    Abstract: An electric vehicle supply equipment includes EVSE control electronics, an EV connector and an HMI circuit, the HMI circuit including a proximity input terminal configured to receive a proximity signal from an EV connector indicating a state of a handle button of the EV connector, a ground terminal, a current source input coupled between the proximity input terminal and the ground terminal, a comparator connected between the proximity input terminal and the ground terminal to provide an output representing a state of the handle button when the current source is activated by the control input and an output terminal to which the output of the comparator is connected, the output terminal being connected to the EVSE control electronics, wherein the state of the handle button is utilized as an input to the HMI circuit.
    Type: Application
    Filed: August 2, 2013
    Publication date: June 9, 2016
    Applicant: SCHNEIDER ELECTRIC USA, INC.
    Inventors: Kevin M. JEFFERIES, Benjamin W. EDWARDS, Matthew L. WHITE, Konstantin A. FILIPPENKO
  • Publication number: 20160138980
    Abstract: A circuit measures temperature in a charging handle 150 of an electric vehicle charging station (EVSE) 100. A temperature sensor is connected between a control pilot line 115 and ground line G in the charging handle of the EVSE. The control pilot line transmits a square wave signal CP having positive and negative portions, to an electric vehicle, according to the SAE J1772 standard. A temperature monitor 300 in the EVSE, coupled to a pilot signal measurement circuit 230 in the EVSE, measures the negative portions of the square wave signal resulting from the temperature sensor conducting current in response to changes in temperature in the handle. Temperature measurement of the charging handle is achieved without significant added cost or complexity, by reusing existing components in the EVSE, with little or no modification required to EVSE electronics, and minimal modification of the handle.
    Type: Application
    Filed: November 14, 2014
    Publication date: May 19, 2016
    Inventors: Kevin M. JEFFERIES, Benjamin W. EDWARDS, Matthew L. WHITE, Konstantin A. FILIPPENKO, Richard K. WEILER
  • Publication number: 20160137079
    Abstract: A temperature sensor 120 automatically shuts down charging operations in response to a temperature increase in a charging handle 150 of an electric vehicle charging station 100. The temperature sensor is connected between a ground conductor and a high voltage conductor L1 in the charging handle. The charging handle includes a return conductor L2/N. The temperature sensor includes a thermistor R1-NTC that changes its resistance in response to an increase in temperature in the charging handle. A portion of current in the high voltage conductor is diverted to the ground conductor, instead of the return conductor, in response to the thermistor sensing a temperature increase, thereby causing a ground fault detector 160 to trip in the charging station.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 19, 2016
    Inventors: Kevin M. JEFFERIES, Benjamin W. EDWARDS, Matthew L. WHITE, Konstantin A. FILIPPENKO, Richard K. WEILER