Patents by Inventor Konstantin G. Kornev

Konstantin G. Kornev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230339226
    Abstract: An electroprinting system having a voltage generator that produces a signal, a drop-on-demand (DOD) droplet generator actuated by the signal of the voltage generator, the drop generator having a wire for submersion into a viscous fluid, a power supply connected to the wire for supplying current to the DOD droplet generator, and a grounded collector for collection of the droplet generated by the DOD droplet generator. The drop-on-demand (DOD) droplet generator has a wire for plunging or threading through a meniscus of a viscous fluid, and an applied electrical potential to form a droplet from the viscous fluid. A method of electroprinting of a viscous fluid is also provided.
    Type: Application
    Filed: February 16, 2023
    Publication date: October 26, 2023
    Inventors: Keith B. RIDER, Fei PENG, Konstantin G. KORNEV
  • Patent number: 9383292
    Abstract: A fluidic probe comprising a plurality of oriented fibers with individual fibers having nano-pores in the fiber bodies, the oriented fibers being twisted together, wherein the twisted oriented fibers form micro-pores between the individual fibers, is disclosed. The fluidic probe exhibits excellent flexibility, deployability and absorptive capacity. The enhanced absorptive capacity is due to the fluid absorption via capillary action of the nano-pores and fluid transport via the micro-pores. The probes can also be formed so as to be remotely controlled by electromagnetic fields and thus be used in a hands-free fashion. With these probes, the paradigm of a stationary microfluidic platform can be shifted to include flexible structures that can include multiple microfluidic sensors in a single fibrous probe.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: July 5, 2016
    Assignee: CLEMSON UNIVERSITY
    Inventors: Konstantin G. Kornev, Chen-Chih Tsai, David Lukas, Petr Mikes
  • Publication number: 20110207168
    Abstract: Disclosed are fibers comprising one or more electrostatically attached substrates that can be used to determine the presence of a biologically active substance. Further disclosed are substrates comprising the fibers, articles of manufacture comprising the fibers and/or substrates, and methods for detecting the presence of a biologically active substance.
    Type: Application
    Filed: August 26, 2009
    Publication date: August 25, 2011
    Inventors: Konstantin G. Kornev, Aleksey Vertegel, Igor Luzinov
  • Patent number: 6731387
    Abstract: Spontaneous absorption of liquids by porous substrates and capillaries is measured by an optical electronic measuring system providing millisecond resolution of millimeter size droplets. A syringe forms a drop over a porous material or capillary. The absorption time is measured from the instant the lower extreme of the drop formed contacts the porous material or capillary until there is no curvature remaining above the porous material or capillary surface at the location of the drop first contact. The time measurement is also a measurement of the absorption velocity. The absorption velocity characterizes the absorption ability of tested substrates with respect to the testing liquid. The apparatus can be used in microfabrication applications for quantitative analysis of the wettability, permeability, and sorption capacity of structured substrates, including various porous/fibrous materials, chips for microfluidic devices, nano and microelectromechanical systems and chips for protein recognition.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: May 4, 2004
    Inventors: Alexander V. Neimark, Konstantin G. Kornev, Alexander V. Bazilevsky, Aleksey N. Rozhkov
  • Publication number: 20030147079
    Abstract: Spontaneous absorption of liquids by porous substrates and capillaries is measured by an optical electronic measuring system providing millisecond resolution of millimeter size droplets. A syringe forms a drop over a porous material or capillary. The absorption time is measured from the instant the lower extreme of the drop formed contacts the porous material or capillary until there is no curvature remaining above the porous material or capillary surface at the location of the drop first contact. The time measurement is also a measurement of the absorption velocity. The absorption velocity characterizes the absorption ability of tested substrates with respect to the testing liquid. The apparatus can be used in microfabrication applications for quantitative analysis of the wettability, permeability, and sorption capacity of structured substrates, including various porous/fibrous materials, chips for microfluidic devices, nano and microelectromechanical systems and chips for protein recognition.
    Type: Application
    Filed: February 6, 2002
    Publication date: August 7, 2003
    Inventors: Alexander V. Neimark, Konstantin G. Kornev, Alexander V. Bazilevsky, Aleksey N. Rozhkov