Patents by Inventor Konstantin Severinov

Konstantin Severinov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11773412
    Abstract: The invention provides for systems, methods, and compositions for targeting nucleic acids. In particular, the invention provides non-naturally occurring or engineered RNA-targeting systems comprising a novel RNA-targeting CRISPR effector protein and at least one targeting nucleic acid component like a guide RNA.
    Type: Grant
    Filed: June 24, 2022
    Date of Patent: October 3, 2023
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology, President and Fellows of Harvard College, Rutgers, the State University of New Jersey, Skolkovo Institute of Science and Technology, The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Konstantin Severinov, Feng Zhang, Yuri I. Wolf, Sergey Shmakov, Ekaterina Semenova, Leonid Minakhin, Kira S. Makarova, Eugene Koonin, Silvana Konermann, Julia Joung, Jonathan S. Gootenberg, Omar O. Abudayyeh, Eric S. Lander
  • Publication number: 20220372525
    Abstract: The invention provides for systems, methods, and compositions for targeting nucleic acids. In particular, the invention provides non-naturally occurring or engineered RNA-targeting systems comprising a novel RNA-targeting CRISPR effector protein and at least one targeting nucleic acid component like a guide RNA.
    Type: Application
    Filed: June 24, 2022
    Publication date: November 24, 2022
    Inventors: Konstantin Severinov, Feng Zhang, Yuri I. Wolf, Sergey Shmakov, Ekaterina Semenova, Leonid Minakhin, Kira S. Makarova, Eugene Koonin, Silvana Konermann, Julia Joung, Jonathan S. Gootenberg, Omar O. Abudayyeh, Eric S. Lander
  • Patent number: 11421250
    Abstract: The invention provides for systems, methods, and compositions for targeting nucleic acids. In particular, the invention provides non-naturally occurring or engineered RNA-targeting systems comprising a novel RNA-targeting CRISPR effector protein and at least one targeting nucleic acid component like a guide RNA.
    Type: Grant
    Filed: December 16, 2017
    Date of Patent: August 23, 2022
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology, President and Fellows of Harvard College, Rutgers, The State University of New Jersey, Skolkovo Institute of Science and Technology, The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Konstantin Severinov, Feng Zhang, Yuri I. Wolf, Sergey Shmakov, Ekaterina Semenova, Leonid Minakhin, Kira S. Makarova, Eugene Koonin, Silvana Konermann, Julia Joung, Jonathan S. Gootenberg, Omar O. Abudayyeh, Eric S. Lander
  • Patent number: 11180751
    Abstract: The invention provides for systems, methods, and compositions for targeting nucleic acids. In particular, the invention provides non-naturally occurring or engineered DNA or RNA-targeting systems comprising a novel DNA or RNA-targeting CRISPR effector protein and at least one targeting nucleic acid component like a guide RNA.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: November 23, 2021
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology, President and Fellows of Harvard College, Rutgers, the State University of New Jersey, The United States of America, as represented by the Secretary, Department of Health and Human Services, Skolkovo Institute of Science and Technology
    Inventors: Eugene Koonin, Feng Zhang, Yuri I. Wolf, Sergey Shmakov, Konstantin Severinov, Ekaterina Semenova, Leonid Minakhin, Kira S. Makarova, Silvana Konermann, Julia Joung, Jonathan S. Gootenberg, Omar O. Abudayyeh
  • Publication number: 20210348157
    Abstract: The invention provides for systems, methods, and compositions for targeting nucleic acids. In particular, the invention provides non-naturally occurring or engineered DNA or RNA-targeting systems comprising a novel DNA or RNA-targeting CRISPR effector protein and at least one targeting nucleic acid component like a guide RNA.
    Type: Application
    Filed: April 30, 2021
    Publication date: November 11, 2021
    Inventors: Eugene Koonin, Feng Zhang, Yuri I. Wolf, Sergey Shmakov, Konstantin Severinov, Ekaterina Semenova, Leonid Minakhin, Kira S. Makarova, Silvana Konermann, Julia Joung, Jonathan S. Gootenberg, Omar O. Abudayyeh
  • Publication number: 20210348156
    Abstract: The invention provides for systems, methods, and compositions for targeting nucleic acids. In particular, the invention provides non-naturally occurring or engineered DNA or RNA-targeting systems comprising a novel DNA or RNA-targeting CRISPR effector protein and at least one targeting nucleic acid component like a guide RNA.
    Type: Application
    Filed: April 30, 2021
    Publication date: November 11, 2021
    Inventors: Eugene Koonin, Feng Zhang, Yuri I. Wolf, Sergey Shmakov, Konstantin Severinov, Ekaterina Semenova, Leonid Minakhin, Kira S. Makarova, Silvana Konermann, Julia Joung, Jonathan S. Gootenberg, Omar O. Abudayyeh
  • Patent number: 11060115
    Abstract: The invention provides for systems, methods, and compositions for targeting nucleic acids. In particular, the invention provides non-naturally occurring or engineered RNA-targeting systems comprising a novel RNA-targeting CRISPR effector protein and at least one targeting nucleic acid component like a guide RNA.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: July 13, 2021
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology, President and Fellows of Harvard College, Rutgers, the State University of New Jersey, Skolkovo Institute of Science and Technology, The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Konstantin Severinov, Feng Zhang, Yuri I. Wolf, Sergey Shmakov, Ekaterina Semenova, Leonid Minakhin, Kira S. Makarova, Eugene Koonin, Silvana Konermann, Julia Joung, Jonathan S. Gootenberg, Omar O. Abudayyeh, Eric S. Lander
  • Publication number: 20210166783
    Abstract: Disclosed here is a method of identifying novel CRISPR effectors, comprising: identifying sequences in a genomic or metagenomic database encoding a CRISPR array; identifying one or more Open Reading Frames (ORFs) in said selected sequences within 10 kb of the CRISPR array; discarding all loci encoding proteins which are assigned to known CRISPR-Cas subtypes and, optionally, all loci encoding a protein of less than 700 amino acids; and identifying putative novel CRISPR effectors, and optionally classifying them based on structure analysis.
    Type: Application
    Filed: August 16, 2017
    Publication date: June 3, 2021
    Applicants: THE BROAD INSTITUTE, INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH
    Inventors: Sergey SHMAKOV, Kira S. MAKAROVA, Yuri I. WOLF, Aaron SMARGON, Neena PYZOCHA, David COX, Winston YAN, David SCOTT, Konstantin SEVERINOV, Feng ZHANG, Eugene V. KOONIN
  • Publication number: 20190382800
    Abstract: The invention provides for systems, methods, and compositions for targeting nucleic acids. In particular, the invention provides non-naturally occurring or engineered RNA-targeting systems comprising a novel RNA-targeting CRISPR effector protein and at least one targeting nucleic acid component like a guide RNA.
    Type: Application
    Filed: June 24, 2019
    Publication date: December 19, 2019
    Inventors: Konstantin Severinov, Feng Zhang, Yuri I. Wolf, Sergey Shmakov, Ekaterina Semenova, Leonid Minakhin, Kira S. Makarova, Eugene Koonin, Silvana Konermann, Julia Joung, Jonathan S. Gootenberg, Omar O. Abudayyeh, Eric S. Lander
  • Publication number: 20190382801
    Abstract: The invention provides for systems, methods, and compositions for targeting nucleic acids. In particular, the invention provides non-naturally occurring or engineered RNA-targeting systems comprising a novel RNA-targeting CRISPR effector protein and at least one targeting nucleic acid component like a guide RNA.
    Type: Application
    Filed: June 24, 2019
    Publication date: December 19, 2019
    Inventors: Konstantin Severinov, Feng Zhang, Yuri I. Wolf, Sergey Shmakov, Ekaterina Semenova, Leonid Minakhin, Kira S. Makarova, Eugene Koonin, Silvana Konermann, Julia Joung, Jonathan S. Gootenberg, Omar O. Abudayyeh, Eric S. Lander
  • Publication number: 20190345518
    Abstract: The invention provides for systems, methods, and compositions for targeting nucleic acids. In particular, the invention provides non-naturally occurring or engineered RNA-targeting systems comprising a novel RNA-targeting CRISPR effector protein and at least one targeting nucleic acid component like a guide RNA.
    Type: Application
    Filed: June 24, 2019
    Publication date: November 14, 2019
    Inventors: Konstantin Severinov, Feng Zhang, Yuri I. Wolf, Sergey Shmakov, Ekaterina Semenova, Leonid Minakhin, Kira S. Makarova, Eugene Koonin, Silvana Konermann, Julia Joung, Jonathan S. Gootenberg, Omar O. Abudayyeh, Eric S. Lander
  • Publication number: 20180327786
    Abstract: The invention provides for systems, methods, and compositions for targeting nucleic acids. In particular, the invention provides non-naturally occurring or engineered RNA-targeting systems comprising a novel RNA-targeting CRISPR effector protein and at least one targeting nucleic acid component like a guide RNA.
    Type: Application
    Filed: December 16, 2017
    Publication date: November 15, 2018
    Inventors: Konstantin Severinov, Feng Zhang, Yuri I. Wolf, Sergey Shmakov, Ekaterina Semenova, Leonid Minakhin, Kira S. Makarova, Eugene Koonin, Silvana Konermann, Julia Joung, Jonathan S. Gootenberg, Omar O. Abudayyeh, Eric S. Lander
  • Publication number: 20180320163
    Abstract: The invention provides for systems, methods, and compositions for targeting nucleic acids. In particular, the invention provides non-naturally occurring or engineered DNA or RNA-targeting systems comprising a novel DNA or RNA-targeting CRISPR effector protein and at least one targeting nucleic acid component like a guide RNA.
    Type: Application
    Filed: December 14, 2017
    Publication date: November 8, 2018
    Inventors: Eugene Koonin, Feng Zhang, Yuri I. Wolf, Sergey Shmakov, Konstantin Severinov, Ekaterina Semenova, Leonid Minakhin, Kira S. Makarova, Silvana Konermann, Julia Joung, Jonathan S. Gootenberg, Omar O. Abudayyeh
  • Publication number: 20170321198
    Abstract: The invention provides for systems, methods, and compositions for targeting nucleic acids. In particular, the invention provides non-naturally occurring or engineered RNA-targeting systems comprising a novel RNA-targeting CRISPR effector protein and at least one targeting nucleic acid component like a guide RNA.
    Type: Application
    Filed: April 7, 2017
    Publication date: November 9, 2017
    Inventors: Konstantin Severinov, Feng Zhang, Yuri I. Wolf, Sergey Shmakov, Ekaterina Semenova, Leonid Minakhin, Kira S. Makarova, Eugene Koonin, Silvana Konermann, Julia Joung, Jonathan S. Gootenberg, Omar O. Abudayyeh, Eric S. Lander
  • Patent number: 8461314
    Abstract: A nucleic acid sequence is provided, encoding at least one of a precursor of a lariat peptide, a processing factor of a lariat peptide, and an export factor of a lariat peptide, wherein the lariat peptide is a non-MccJ25 lariat peptide according to general structural formula (I) Also provided are biosynthesis systems useful for the synthesis of peptides according to formula (I), and methods of detecting and identifying nucleic acid sequences encoding the disclosed proteins.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: June 11, 2013
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Richard H. Ebright, Konstantin Severinov
  • Patent number: 8354246
    Abstract: The invention provides a method of inhibiting a bacterial RNA polymerases. The invention has applications in control of bacterial RNA polymerase activity, control of bacterial gene expression, control of bacterial growth, antibacterial chemistry, and antibacterial therapy.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: January 15, 2013
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Richard H. Ebright, Jayanta Mukhopadhyay, Konstantin Severinov, Ekaterina Semenova
  • Publication number: 20110201040
    Abstract: The invention provides a method of inhibiting a bacterial RNA polymerases. The invention has applications in control of bacterial RNA polymerase activity, control of bacterial gene expression, control of bacterial growth, antibacterial chemistry, and antibacterial therapy.
    Type: Application
    Filed: December 18, 2009
    Publication date: August 18, 2011
    Applicant: Rutgers, The State University of New Jersey
    Inventors: Richard H. Ebright, Jayanta Mukhopadhyay, Konstantin Severinov, Ekaterina Semenova
  • Publication number: 20100261171
    Abstract: A nucleic acid sequence is provided, encoding at least one of a precursor of a lariat peptide, a processing factor of a lariat peptide, and an export factor of a lariat peptide, wherein the lariat peptide is a non-MccJ25 lariat peptide according to general structural formula (I) Also provided are biosynthesis systems useful for the synthesis of peptides according to formula (I), and methods of detecting and identifying nucleic acid sequences encoding the disclosed proteins.
    Type: Application
    Filed: September 20, 2007
    Publication date: October 14, 2010
    Applicant: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Richard H. Ebright, Konstantin Severinov
  • Patent number: 7442762
    Abstract: Analogs of bacteriocidal peptide microcin J25 (MccJ25) are provided that have an amino acid sequence that differs from that of MccJ25 by having at least one amino acid substitution; and that inhibit bacterial cell growth with a potency at least equal to that of MccJ25.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: October 28, 2008
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Konstantin Severinov, Richard Ebright, Olga Pavlova, Elena Sineva
  • Publication number: 20080200374
    Abstract: Analogs of bacteriocidal peptide microcin J25 (MccJ25) are provided that have an amino acid sequence that differs from that of MccJ25 by having at least one amino acid substitution; and that inhibit bacterial cell growth with a potency at least equal to that of MccJ25.
    Type: Application
    Filed: March 9, 2006
    Publication date: August 21, 2008
    Inventors: Konstantin Severinov, Richard Ebright, Olga Pavlova, Elena Sineva