Patents by Inventor Konstantin Solntsev
Konstantin Solntsev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20030001320Abstract: Methods of making metal oxide articles, preferably iron oxide articles, and articles thereby produced. The method comprises the steps of slightly pressing powder to a compact, the powder consisting essentially of a first oxide of the metal; and subjecting the compact to a heat treatment that causes the powder to sinter into a unitary body and results in the transformation of at least a portion of the first oxide to a second oxide by oxidation or deoxidation during the heat treatment. In disclosed embodiments, the heat treatment is conducted either in air at atmospheric pressure or at a subatmospheric pressure. The method optionally includes more heating/cooling steps resulting in additional oxidation/deoxidation cycles. Sintered iron oxide articles of the invention have high mechanical strengths and interconnected pore structures, providing for efficient filtering of liquids and gases.Type: ApplicationFiled: August 21, 2002Publication date: January 2, 2003Inventors: Konstantin Solntsev, Eugene Shustorovich, Sergei Myasoedov, Vyacheslav Morgunov, Andrei Chernyavsky, Yuri Buslaev, Richard Montano, Alexander Shustorovich
-
Patent number: 6461562Abstract: Methods of making metal oxide articles, preferably iron oxide articles, and articles thereby produced. The method comprises the steps of slightly pressing powder to a compact, the powder consisting essentially of a first oxide of the metal; and subjecting the compact to a heat treatment that causes the powder to sinter into a unitary body and results in the transformation of at least a portion of the first oxide to a second oxide by oxidation or deoxidation during the heat treatment. In disclosed embodiments, the heat treatment is conducted either in air at atmospheric pressure or at a subatmospheric pressure. The method optionally includes more heating/cooling steps resulting in additional oxidation/deoxidation cycles. Sintered iron oxide articles of the invention have high mechanical strengths and interconnected pore structures, providing for efficient filtering of liquids and gases.Type: GrantFiled: February 17, 1999Date of Patent: October 8, 2002Assignee: American Scientific Materials Technologies, LPInventors: Konstantin Solntsev, Eugene Shustorovich, Sergei Myasoedov, Vyacheslav Morgunov, Andrei Chernyavsky, Yuri Buslaev, Richard Montano, Alexander Shustorovich
-
Patent number: 6152972Abstract: Catalytic metal additives that directly dissolve in gasoline in concentrations providing efficient and economical three-way catalysis of exhaust gases from internal combustion engines. The additives are compounds of noble (e.g., Pt, Pd, Au and Rh) or non-noble (e.g., Re) metals. The preferred compounds have polar metal ligand bonds, preferably with inorganic ligands such as halogens, oxygen, etc., and/or salts with highly ionic (polarizable) cations such as of alkali metals. The preferred additive is a combination of X.sub.2 PtCl.sub.6, RhCl.sub.3 and XReO.sub.4, where X=K, Rh or Cs. A combination of these finely ground materials is fabricated into a briquette or filter which is deposited in the gas tank or placed in a gas line. The catalytic metals are carried by the exhaust gases through the exhaust system where they are deposited on surfaces of the system to convert toxic emissions.Type: GrantFiled: March 29, 1993Date of Patent: November 28, 2000Assignee: Blue Planet Technologies Co., L.P.Inventors: Alexander Shustorovich, Eugene Shustorovich, Richard Montano, Konstantin Solntsev, Yuri Buslaev, VEniamin Kalner, Nikolai Moiseev, Aleksandr Bragin
-
Patent number: 6077370Abstract: Monolithic metal oxide structures, and processes for making such structures, are disclosed. The structures are obtained by heating a metal-containing structure having a plurality of surfaces in close proximity to one another in an oxidative atmosphere at a temperature below the melting point of the metal while maintaining the close proximity of the metal surfaces. Exemplary structures of the invention include open-celled and closed-cell monolithic metal oxide structures comprising a plurality of adjacent bonded corrugated and/or flat layers, and metal oxide filters obtained from a plurality of metal filaments oxidized in close proximity to one another.Type: GrantFiled: May 15, 1998Date of Patent: June 20, 2000Assignee: American Scientific Materials Technologies, L.P.Inventors: Konstantin Solntsev, Eugene Shustorovich, Sergei Myasoedov, Vyacheslav Morgunov, Andrei Chernyavsky, Yuri Buslaev, Richard Montano, Alexander Shustorovich
-
Patent number: 6071590Abstract: Monolithic metal oxide structures, and processes for making such structures, are disclosed. The structures are obtained by heating a metal-containing structure having a plurality of surfaces in close proximity to one another in an oxidative atmosphere at a temperature below the melting point of the metal while maintaining the close proximity of the metal surfaces. Exemplary structures of the invention include open-celled and closed-cell monolithic metal oxide structures comprising a plurality of adjacent bonded corrugated and/or flat layers, and metal oxide filters obtained from a plurality of metal filaments oxidized in close proximity to one another.Type: GrantFiled: May 15, 1998Date of Patent: June 6, 2000Assignee: American Scientific Materials Technologies, L.P.Inventors: Konstantin Solntsev, Eugene Shustorovich, Sergei Myasoedov, Vyacheslav Morgunov, Andrei Chernyavsky, Yuri Buslaev, Richard Montano, Alexander Shustorovich
-
Patent number: 6051203Abstract: Monolithic metal oxide structures, and processes for making such structures, are disclosed. The structures are obtained by heating a metal-containing structure having a plurality of surfaces in close proximity to one another in an oxidative atmosphere at a temperature below the melting point of the metal while maintaining the close proximity of the metal surfaces. Exemplary structures of the invention include open-celled and closed-cell monolithic metal oxide structures comprising a plurality of adjacent bonded corrugated and/or flat layers, and metal oxide filters obtained from a plurality of metal filaments oxidized in close proximity to one another.Type: GrantFiled: May 15, 1998Date of Patent: April 18, 2000Assignee: American Scientific Materials Technologies, L.P.Inventors: Konstantin Solntsev, Eugene Shustorovich, Sergei Myasoedov, Vyacheslav Morgunov, Andrei Chernyavsky, Yuri Buslaev, Richard Montano
-
Patent number: 6045628Abstract: Monolithic metal oxide structures, and processes for making such structures, are disclosed. The structures are obtained by heating a metal-containing structure having a plurality of surfaces in close proximity to one another in an oxidative atmosphere at a temperature below the melting point of the metal while maintaining the close proximity of the metal surfaces. Exemplary structures of the invention include open-celled and closed-cell monolithic metal oxide structures comprising a plurality of adjacent bonded corrugated and/or flat layers, and metal oxide filters obtained from a plurality of metal filaments oxidized in close proximity to one another.Type: GrantFiled: April 30, 1996Date of Patent: April 4, 2000Assignee: American Scientific Materials Technologies, L.P.Inventors: Konstantin Solntsev, Eugene Shustorovich, Sergei Myasoedov, Vyacheslav Morgunov, Andrei Chernyavsky, Yuri Buslaev, Richard Montano, Alexander Shustorovich
-
Patent number: 5814164Abstract: A thin-walled monolithic iron oxide structure, and process for making such a structure, is disclosed. The structure comprises a monolithic iron oxide structure obtained from oxidizing a thin-walled iron-containing, preferably plain steel, structure at a temperature below the melting point of iron. The preferred wall thickness of the steel is less than about 0.3 mm. The preferred iron oxides of the invention are hematite, magnetite, and combinations thereof. The thin-walled structures of the invention have substantially the same physical shape as the iron starting structure. Thin-walled iron-oxide structures of the invention can be used in a wide variety of applications, including gas and liquid flow dividers, corrosion resistant components of automotive exhaust systems, catalytic supports, filters, thermal insulating materials, and sound insulating materials.Type: GrantFiled: November 9, 1994Date of Patent: September 29, 1998Assignee: American Scientific Materials Technologies L.P.Inventors: Alexander Shustorovich, Eugene Shustorovich, Richard Montano, Konstantin Solntsev, Yuri Buslaev, Sergei Myasoedov, Vyacheslav Morgunov
-
Patent number: 5786296Abstract: A thin-walled monolithic iron oxide structure, and process for making such a structure, is disclosed. The structure comprises a monolithic iron oxide structure obtained from oxidizing a thin-walled iron-containing, preferably plain steel, structure at a temperature below the melting point of iron. The preferred wall thickness of the steel is less than about 0.3 mm. The preferred iron oxides of the invention are hematite, magnetite, and combinations thereof. The thin-walled structures of the invention have substantially the same physical shape as the iron starting structure. Thin-walled iron-oxide structures of the invention can be used in a wide variety of applications, including gas and liquid flow dividers, corrosion resistant components of automotive exhaust systems, catalytic supports, filters, thermal insulating materials, and sound insulating materials.Type: GrantFiled: April 18, 1997Date of Patent: July 28, 1998Assignee: American Scientific Materials Technologies L.P.Inventors: Alexander Shustorovich, Eugene Shustorovich, Richard Montano, Konstantin Solntsev, Yuri Buslaev, Sergei Myasoedov, Vyacheslav Morgunov
-
Patent number: 5604980Abstract: A catalytic vessel for adsorbing catalytic metals, such as from automotive exhaust gases, and carrying out three-way catalysis includes an inlet at an upstream end, a plurality of catalytic chambers located downstream of the inlet, and an outlet. At least one of the catalytic chambers contains a plurality of sheet members preferably made of steel and adapted for deposition of a metal selected from the group of noble and non-noble metals, and more particularly from the group consisting of platinum, rhodium, rhenium, palladium, and gold. The vessel may be used in a catalytic system which contains a liquid source of metal catalysts, such as a solution or a gasoline additive, means for adding metal catalysts to a combustion system, and the catalytic vessel, which collects the metal catalysts and is a site for three-way catalytic conversion of starting materials such as automotive emissions to final products.Type: GrantFiled: August 8, 1995Date of Patent: February 25, 1997Assignee: Blue Planet Technologies Co., LPInventors: Alexander Shustorovich, Eugene Shustorovich, Richard Montano, Konstantin Solntsev, Yuri Buslaev, Veniamin Kalner, Nikolai Moiseev, Aleksandr Bragin
-
Patent number: 5525316Abstract: A catalyst solution comprising one or more compounds of a metal catalyst and an organic solvent selected from the group consisting of a glycol derivative, an alkyl pyrrolidone, and an alkoxy ethyl ether, wherein no additional chloride-containing compounds are added to the solution. The metal can be selected from the group consisting of platinum, rhenium and rhodium. The compounds can be selected from the group consisting of H.sub.2 PtCl.sub.6.6H.sub.2 O, Re.sub.2 (CO).sub.10, Re.sub.2 O.sub.7, LiReO.sub.4 and RhCl.sub.3.4H.sub.2 O. The catalytic solutions are useful in conversion of pollutants from automotive engines and the like. In a particularly preferred embodiment, the solution contains three metals: platinum, rhenium, and rhodium.Type: GrantFiled: November 4, 1994Date of Patent: June 11, 1996Assignee: Blue Planet Technologies Co. L.P.Inventors: Eugene Shustorovich, Richard Montano, Konstantin Solntsev, Yuri Buslaev, Veniamin Kalner, Aleksandr Bragin, Nikolai Moiseev
-
Patent number: 5460790Abstract: A catalytic vessel for adsorbing catalytic metals, such as from automotive exhaust gases, and carrying out three-way catalysis includes an inlet at an upstream end, a plurality of catalytic chambers located downstream of the inlet, and an outlet. At least one of the catalytic chambers contains a plurality of sheet members preferably made of steel and adapted for deposition of a metal selected from the group of noble and non-noble metals, and more particularly from the group including platinum, rhodium, rhenium, palladium, and gold. The vessel may be used in a catalytic system which contains a liquid source of metal catalysts, such as a solution or a gasoline additive, from which the metal catalysts are added to a combustion system, and the catalytic vessel, which collects the metal catalysts and is a site for three-way catalytic conversion of starting materials such as automotive emissions to final products.Type: GrantFiled: March 29, 1993Date of Patent: October 24, 1995Assignee: Blue Planet Technologies Co., L.P.Inventors: Alexander Shustorovich, Eugene Shustorovich, Richard Montano, Konstantin Solntsev, Yuri Buslaev, Veniamin Kalner, Nikolai Moiseev, Aleksandr Bragin
-
Patent number: 5386690Abstract: A catalyst system comprising a metal catalyst in a liquid catalyst solution, means for adding metal catalyst from the solution to a combustion system, and a catalyst collector for collecting the metal catalyst which serves as a reaction vessel. A method for converting emissions from a combustion chamber comprising providing a source of metal catalyst in a liquid solution; adding the metal catalyst to a combustion system; carrying the metal catalyst to a catalyst collector: depositing the metal catalyst on a solid surface in the catalyst collector; and converting the emissions for the combustion chamber by contacting the emissions and the metal catalyst. Preferably, the metal catalyst solution contains a plurality of metals.Type: GrantFiled: September 8, 1993Date of Patent: February 7, 1995Assignee: Blue Planet Technologies Co., L.P.Inventors: Eugene Shustorovich, Veniamin Kalner, Konstantin Solntsev, Nikolai Moiseev, Yuri Buslayev, Richard Montano, Aleksandr Bragin
-
Patent number: 5387569Abstract: A catalyst solution comprising one or more compounds of a metal catalyst and an organic solvent selected from the group consisting of a glycol derivative, an alkyl pyrrolidone, and an alkoxy ethyl ether, wherein no additional chloride-containing compounds are added to the solution. The metal can be selected from the group consisting of platinum, rhenium and rhodium. The compounds can be selected from the group consisting of H.sub.2 PtCl.sub.6.6H.sub.2 O, Re.sub.2 (CO).sub.10, Re.sub.2 O.sub.7, LiReO.sub.4 and RhCl.sub.3.4H.sub.2 O. The catalytic solutions are useful in conversion of pollutants from automotive engines and the like. In a particularly preferred embodiment, the solution contains three metals: platinum, rhenium, and rhodium.Type: GrantFiled: February 25, 1992Date of Patent: February 7, 1995Assignee: Blue Planet Technologies Co., L.P.Inventors: Eugene Shustorovich, Richard Montano, Aleksandr Bragin, Veniamin Kalner, Konstantin Solntsev, Nikolai Moiseev, Yuri Buslaev
-
Patent number: 5322671Abstract: A catalyst vessel including an inlet at an upstream end, a plurality of catalytic chambers located downstream of the conduit, wherein at least two chambers are connected by a plate having one or more orifices therein to permit gas flow through from the first chamber to the second chamber, and wherein at least one surface in the chamber is adapted for deposition of a metal selected from the group consisting of platinum, rhodium, and rhenium, and an outlet at its downstream end.Type: GrantFiled: February 25, 1992Date of Patent: June 21, 1994Assignee: Blue Planet Technologies Co., L.P.Inventors: Eugene Shustorovich, Richard Montano, Veniamin Kalner, Aleksandr Bragin, Nikolai Moiseev, Konstantin Solntsev, Yuri Buslayev