Patents by Inventor Kosar Baghbani-Parizi
Kosar Baghbani-Parizi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11155865Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.Type: GrantFiled: July 18, 2018Date of Patent: October 26, 2021Assignee: GENAPSYS, INC.Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
-
Patent number: 11021748Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.Type: GrantFiled: October 10, 2019Date of Patent: June 1, 2021Assignee: GENAPSYS, INC.Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
-
Patent number: 10787705Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.Type: GrantFiled: February 14, 2018Date of Patent: September 29, 2020Assignee: GENAPSYS, INC.Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
-
Publication number: 20200255893Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.Type: ApplicationFiled: October 10, 2019Publication date: August 13, 2020Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
-
Patent number: 10612091Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.Type: GrantFiled: February 22, 2019Date of Patent: April 7, 2020Assignee: GENAPSYS, INC.Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
-
Patent number: 10539527Abstract: A sensing apparatus for sensing target materials including biological or chemical molecules in a fluid. One such apparatus includes a semiconductor-on-insulator (SOI) structure having an electrically-insulating layer, a fluidic channel supported by the SOI structure and configured and arranged to receive and pass a fluid including the target materials, and a semiconductor device including at least three electrically-contiguous semiconductor regions doped to exhibit a common polarity. The semiconductor regions include a sandwiched region sandwiched between two of the other semiconductor regions, and configured and arranged adjacent to the fluidic channel with a surface directed toward the fluidic channel for coupling to the target materials in the fluidic channel, and further arranged for responding to a bias voltage. The sensing apparatus also includes an amplification circuit in or on the SOI and that is arranged to facilitate sensing of the target material near the fluidic channel.Type: GrantFiled: April 10, 2018Date of Patent: January 21, 2020Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Kosar Baghbani-Parizi, Yoshio Nishi, Hesaam Esfandyarpour
-
Patent number: 10494672Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.Type: GrantFiled: February 22, 2019Date of Patent: December 3, 2019Assignee: GENAPSYS, INC.Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
-
Publication number: 20190226021Abstract: A method comprises magnetically holding a bead carrying biological material (e.g., nucleic acid, which may be in the form of DNA fragments or amplified DNA) in a specific location of a substrate, and applying an electric field local to the bead to isolate the biological material or products or byproducts of reactions of the biological material. For example, the bead isolated from other beads having associated biological material. The electric field in various embodiments concentrates reagents for an amplification or sequencing reaction, and/or concentrates and isolates detectable reaction by-products. For example, by isolating nucleic acids around individual beads, the electric field can allow for clonal amplification, as an alternative to emulsion PCR. In other embodiments, the electric field isolates a nanosensor proximate to the bead, to facilitate detection of at least one of local pH change, local conductivity change, local charge concentration change and local heat.Type: ApplicationFiled: August 28, 2018Publication date: July 25, 2019Inventors: Hesaam Esfandyarpour, Mark F. Oldham, Kosar Baghbani Parizi, Eric S. Nordman
-
Publication number: 20190177791Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.Type: ApplicationFiled: February 22, 2019Publication date: June 13, 2019Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
-
Publication number: 20190177790Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.Type: ApplicationFiled: February 22, 2019Publication date: June 13, 2019Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T, Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
-
Patent number: 10266892Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.Type: GrantFiled: June 13, 2018Date of Patent: April 23, 2019Assignee: GENAPSYS, INC.Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
-
Patent number: 10260095Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.Type: GrantFiled: June 13, 2018Date of Patent: April 16, 2019Assignee: GENAPSYS, INC.Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
-
Publication number: 20180335401Abstract: A sensing apparatus for sensing target materials including biological or chemical molecules in a fluid. One such apparatus includes a semiconductor-on-insulator (SOI) structure having an electrically-insulating layer, a fluidic channel supported by the SOI structure and configured and arranged to receive and pass a fluid including the target materials, and a semiconductor device including at least three electrically-contiguous semiconductor regions doped to exhibit a common polarity. The semiconductor regions include a sandwiched region sandwiched between two of the other semiconductor regions, and configured and arranged adjacent to the fluidic channel with a surface directed toward the fluidic channel for coupling to the target materials in the fluidic channel, and further arranged for responding to a bias voltage. The sensing apparatus also includes an amplification circuit in or on the SOI and that is arranged to facilitate sensing of the target material near the fluidic channel.Type: ApplicationFiled: April 10, 2018Publication date: November 22, 2018Inventors: Kosar Baghbani-Parizi, Yoshio Nishi, Hesaam Esfandyarpour
-
Publication number: 20180327837Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.Type: ApplicationFiled: July 18, 2018Publication date: November 15, 2018Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
-
Patent number: 10100356Abstract: A method comprises magnetically holding a bead carrying biological material (e.g., nucleic acid, which may be in the form of DNA fragments or amplified DNA) in a specific location of a substrate, and applying an electric field local to the bead to isolate the biological material or products or byproducts of reactions of the biological material. For example, the bead isolated from other beads having associated biological material. The electric field in various embodiments concentrates reagents for an amplification or sequencing reaction, and/or concentrates and isolates detectable reaction by-products. For example, by isolating nucleic acids around individual beads, the electric field can allow for clonal amplification, as an alternative to emulsion PCR. In other embodiments, the electric field isolates a nanosensor proximate to the bead, to facilitate detection of at least one of local pH change, local conductivity change, local charge concentration change and local heat.Type: GrantFiled: September 21, 2015Date of Patent: October 16, 2018Assignee: GENAPSYS, INC.Inventors: Hesaam Esfandyarpour, Mark F. Oldham, Kosar Baghbani Parizi, Eric S. Nordman
-
Publication number: 20180282806Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.Type: ApplicationFiled: June 13, 2018Publication date: October 4, 2018Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
-
Publication number: 20180282805Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.Type: ApplicationFiled: June 13, 2018Publication date: October 4, 2018Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
-
Publication number: 20180245150Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.Type: ApplicationFiled: February 14, 2018Publication date: August 30, 2018Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
-
Patent number: 9945807Abstract: A sensing apparatus for sensing target materials including biological or chemical molecules in a fluid. One such apparatus includes a semiconductor-on-insulator (SOI) structure having an electrically-insulating layer, a fluidic channel supported by the SOI structure and configured and arranged to receive and pass a fluid including the target materials, and a semiconductor device including at least three electrically-contiguous semiconductor regions doped to exhibit a common polarity. The semiconductor regions include a sandwiched region sandwiched between two of the other semiconductor regions, and configured and arranged adjacent to the fluidic channel with a surface directed toward the fluidic channel for coupling to the target materials in the fluidic channel, and further arranged for responding to a bias voltage. The sensing apparatus also includes an amplification circuit in or on the SOI and that is arranged to facilitate sensing of the target material near the fluidic channel.Type: GrantFiled: November 9, 2015Date of Patent: April 17, 2018Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Kosar Baghbani-Parizi, Yoshio Nishi, Hesaam Esfandyarpour
-
Patent number: 9926596Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.Type: GrantFiled: May 29, 2012Date of Patent: March 27, 2018Assignee: GENAPSYS, INC.Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee