Patents by Inventor Kosei FUKUOKA

Kosei FUKUOKA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230395278
    Abstract: In this slit copper material, a purity of Cu is 99.96% by mass or greater, a ratio W/t of a plate width W to a plate thickness t is 10 or greater, an electrical conductivity is 97.0% IACS or greater, and an average value of orientation densities at ?2=5°, in a range of ?1=0° to 90°, and at ?=0° in a plate center portion is 2.0 or greater and less than 30.0.
    Type: Application
    Filed: October 20, 2021
    Publication date: December 7, 2023
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Hirotaka MATSUNAGA, Kosei FUKUOKA, Kazunari MAKI
  • Publication number: 20230313342
    Abstract: A slit copper material, a purity of Cu is comprises 99.96% by mass or greater of Cu. In this slit copper material, a ratio W/t of a plate width W to a plate thickness t is 10 or greater, an electrical conductivity is 97.0% IACS or greater, a ratio B/A of an average crystal grain size B in a plate surface layer portion to an average crystal grain size A in a plate center portion is in a range of 0.80 or greater and 1.20 or less, and the average crystal grain size A in the plate center portion is 25 ?m or less.
    Type: Application
    Filed: October 20, 2021
    Publication date: October 5, 2023
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Hirotaka MATSUNAGA, Kosei FUKUOKA, Kazunari MAKI
  • Publication number: 20230313341
    Abstract: A copper alloy plastically-worked material comprises Mg in the amount of 10-100 mass ppm and a balance of Cu and inevitable impurities, which comprise 10 mass ppm or less of S, 10 mass ppm or less of P, 5 mass ppm or less of Se, 5 mass ppm or less of Te, 5 mass ppm or less of Sb, 5 mass ppm or less of Bi and 5 mass ppm or less of As. The total amount of S, P, Se, Te, Sb, Bi, and As is 30 mass ppm or less. The mass ratio of [Mg]/[S+P+Se+Te+Sb+Bi+As] is 0.6 or greater and 50 or less. The electrical conductivity is 97% IACS or greater. The tensile strength is 275 MPa or less. The heat-resistant temperature after draw working is 150° C. or higher.
    Type: Application
    Filed: June 30, 2021
    Publication date: October 5, 2023
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Hirotaka MATSUNAGA, Yuki ITO, Kosei FUKUOKA, Kazunari MAKI, Kenji MORIKAWA, Shinichi FUNAKI, Hiroyuki MORI
  • Publication number: 20230250514
    Abstract: This copper alloy contains greater than 10 mass ppm and less than 100 mass ppm of Mg, with a balance being Cu and inevitable impurities, which comprise: 10 mass ppm or less of S, 10 mass ppm or less of P, 5 mass ppm or less of Se, 5 mass ppm or less of Te, 5 mass ppm or less of Sb, 5 mass ppm or less of Bi, and 5 mass ppm or less of As. The total amount of S, P, Se, Te, Sb, Bi, and As is 30 mass ppm or less. The mass ratio [Mg]/[S+P+Se+Te+Sb+Bi+As] is 0.6 to 50, an electrical conductivity is 97% IACS or greater. The half-softening temperature ratio TLD/TTD is greater than 0.95 and less than 1.08. The half-softening temperature TLD is 210° C. or higher.
    Type: Application
    Filed: June 30, 2021
    Publication date: August 10, 2023
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Hirotaka MATSUNAGA, Kosei FUKUOKA, Kazunari MAKI, Kenji MORIKAWA, Shinichi FUNAKI, Hiroyuki MORI
  • Publication number: 20230243018
    Abstract: This copper alloy of one aspect contains greater than 10 mass ppm and less than 100 mass ppm of Mg, with a balance being Cu and inevitable impurities, in which among the inevitable impurities, a S amount is 10 mass ppm or less, a P amount is 10 mass ppm or less, a Se amount is 5 mass ppm or less, a Te amount is 5 mass ppm or less, an Sb amount is 5 mass ppm or less, a Bi amount is 5 mass ppm or less, an As amount is 5 mass ppm or less, a total amount of S, P, Se, Te, Sb, Bi, and As is 30 mass ppm or less, a mass ratio [Mg]/[S+P+Se+Te+Sb+Bi+As] is 0.6 to 50, an electrical conductivity is 97% IACS or greater, and a residual stress ratio at 150° C. for 1000 hours is 20% or greater.
    Type: Application
    Filed: June 30, 2021
    Publication date: August 3, 2023
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Hirotaka MATSUNAGA, Kosei FUKUOKA, Kazunari MAKI, Kenji MORIKAWA, Shinichi FUNAKI, Hiroyuki MORI
  • Publication number: 20230243020
    Abstract: A copper alloy plastically-worked material comprises Mg in the amount of greater than 10 mass ppm and 100 mass ppm or less and a balance of Cu and inevitable impurities, that comprise 10 mass ppm or less of S, 10 mass ppm or less of P, 5 mass ppm or less of Se, 5 mass ppm or less of Te, 5 mass ppm or less of Sb, 5 mass ppm or less of Bi, and 5 mass ppm or less of As. The total amount of S, P, Se, Te, Sb, Bi, and As is 30 mass ppm or less. The mass ratio of [Mg]/[S+P+Se+Te+Sb+Bi+As] is 0.6 or greater and 50 or less, the electrical conductivity is 97% IACS or greater. The tensile strength is 200 MPa or greater. The heat-resistant temperature is 150° C. or higher.
    Type: Application
    Filed: June 30, 2021
    Publication date: August 3, 2023
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Hirotaka MATSUNAGA, Yuki ITO, Kosei FUKUOKA, Kazunari MAKI, Kenji MORIKAWA, Shinichi FUNAKI, Hiroyuki MORI
  • Publication number: 20230243019
    Abstract: This copper alloy contains 10-100 mass ppm of Mg, with a balance being Cu and inevitable impurities, which comprise; 10 mass ppm or less of S, 10 mass ppm or less of P, 5 mass ppm or less of Se, 5 mass ppm or less of Te, 5 mass ppm or less of Sb, 5 mass ppm or less of Bi, 5 mass ppm or less of As. The total amount of S, P, Se, Te, Sb, Bi, and As is 30 mass ppm or less. The mass ratio [Mg]/[S+P+Se+Te+Sb+Bi+As] is 0.6 to 50. The electrical conductivity is 97% IACS or greater. The half-softening temperature is 200° C. or higher. The residual stress ratio RSG at 180° C. for 30 hours is 20% or greater. The ratio RSG/RSB at 180° C. for 30 hours is greater than 1.0.
    Type: Application
    Filed: June 30, 2021
    Publication date: August 3, 2023
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Hirotaka MATSUNAGA, Kosei FUKUOKA, Kazunari MAKI, Kenji MORIKAWA, Shinichi FUNAKI, Hiroyuki MORI
  • Publication number: 20230111128
    Abstract: A metal base substrate of the present invention is a metal base substrate including a metal substrate, an insulating layer laminated on one surface of the metal substrate, and a circuit layer laminated on a surface of the insulating layer opposite to the metal substrate side, in which the circuit layer is made of a metal having a semi-softening temperature of 100° C. or higher and 150° C. or lower, the insulating layer contains a resin, and a relationship between a thickness t (?m) of the insulating layer and an elastic modulus E (GPa) of the insulating layer at 100° C. satisfies a following formula (1).
    Type: Application
    Filed: March 30, 2021
    Publication date: April 13, 2023
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Fumiaki Ishikawa, Shintaro Hara, Hiroyuki Mori, Kosei Fukuoka
  • Patent number: 11613794
    Abstract: A superconductivity stabilizing material used for a superconducting wire and which is formed of a copper material containing at least one of additive elements selected from Ca, Sr, Ba, and rare earth elements in a range of 3 ppm by mass or more and 100 ppm by mass or less in total, with a remainder being Cu and unavoidable impurities, in which the total concentration of the unavoidable impurities, excluding O, H, C, N, and S which are gas components, is 5 ppm by mass or more and 100 ppm by mass or less, the half-softening temperature thereof is 200° C. or lower, the Vickers hardness thereof is 55 Hv or more, and the residual resistance ratio (RRR) thereof is 50 or more and 500 or less.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: March 28, 2023
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kosei Fukuoka, Yuki Ito, Kazunari Maki
  • Patent number: 11149329
    Abstract: This stabilizer material for superconductor includes a copper material, wherein the copper material contains one kind or two kinds or more of additive elements selected from Ca, La, and Ce for a total amount of 3 ppm by mass or more and 400 ppm by mass or less, with the remainder being Cu and unavoidable impurities, and the total concentration of the unavoidable impurities other than O, H, C, N, and S, which are gas components, is 5 ppm by mass or more and 100 ppm by mass or less, and compounds including one kind or two kinds or more selected from CaS, CaSO4, LaS, La2SO2, CeS, and Ce2SO2 are present in the matrix.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: October 19, 2021
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kosei Fukuoka, Yuki Ito, Kazunari Maki
  • Publication number: 20210225560
    Abstract: The present invention is a superconducting wire including: a wire formed of a superconducting material; and a superconducting stabilization material disposed in contact with the wire, in which the superconducting stabilization material is formed of a copper material which contains: one or more types of additive elements selected from Ca, Sr, Ba, and rare earth elements in a total of 3 ppm by mass to 400 ppm by mass; a balance being Cu and inevitable impurities, and in which a total concentration of the inevitable impurities excluding O, H, C, N, and S which are gas components is 5 ppm by mass to 100 ppm by mass.
    Type: Application
    Filed: October 13, 2020
    Publication date: July 22, 2021
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kosei FUKUOKA, Yuki ITO, Kazunari MAKI
  • Patent number: 10971278
    Abstract: This superconducting wire includes: a strand including a superconducting material; and a stabilizer material for superconductor arranged in contact with the strand, wherein the stabilizer material for superconductor includes a copper material which contains one kind or two kinds or more of additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) for a total amount of 3 ppm by mass or more and 400 ppm by mass or less, with the remainder being Cu and unavoidable impurities, the total concentration of the unavoidable impurities other than O, H, C, N, and S, which are gas components, is 5 ppm by mass or more and 100 ppm by mass or less, and compounds including one kind or two kinds or more selected from CaS, CaSO4, SrS, SrSO4, BaS, BaSO4, (RE)S, and (RE)2SO2 are present in the matrix.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: April 6, 2021
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kosei Fukuoka, Yuki Ito, Kazunari Maki
  • Patent number: 10964453
    Abstract: The present invention is a superconducting stabilization material used for a superconducting wire, which is formed of a copper material which contains: one or more types of additive elements selected from Ca, La, and Ce in a total of 3 ppm by mass to 400 ppm by mass; and a balance being Cu and inevitable impurities and in which a total concentration of the inevitable impurities excluding O, H, C, N, and S which are gas components is 5 ppm by mass to 100 ppm by mass.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: March 30, 2021
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kosei Fukuoka, Yuki Ito, Kazunari Maki
  • Patent number: 10964454
    Abstract: The present invention is a superconducting wire including: a wire formed of a superconducting material; and a superconducting stabilization material disposed in contact with the wire, in which the superconducting stabilization material is formed of a copper material which contains: one or more types of additive elements selected from Ca, Sr, Ba, and rare earth elements in a total of 3 ppm by mass to 400 ppm by mass; a balance being Cu and inevitable impurities, and in which a total concentration of the inevitable impurities excluding O, H, C, N, and S which are gas components is 5 ppm by mass to 100 ppm by mass.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: March 30, 2021
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kosei Fukuoka, Yuki Ito, Kazunari Maki
  • Patent number: 10910132
    Abstract: The present invention is a superconducting wire including: a wire formed of a superconducting material; and a superconducting stabilization material disposed in contact with the wire, in which the superconducting stabilization material is formed of a copper material which contains: one or more types of additive elements selected from Ca, Sr, Ba, and rare earth elements in a total of 3 ppm by mass to 400 ppm by mass; a balance being Cu and inevitable impurities, and in which a total concentration of the inevitable impurities excluding O, H, C, N, and S which are gas components is 5 ppm by mass to 100 ppm by mass.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: February 2, 2021
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kosei Fukuoka, Yuki Ito, Kazunari Maki
  • Publication number: 20200340079
    Abstract: A superconductivity stabilizing material used for a superconducting wire and which is formed of a copper material containing at least one of additive elements selected from Ca, Sr, Ba, and rare earth elements in a range of 3 ppm by mass or more and 100 ppm by mass or less in total, with a remainder being Cu and unavoidable impurities, in which the total concentration of the unavoidable impurities, excluding O, H, C, N, and S which are gas components, is 5 ppm by mass or more and 100 ppm by mass or less, the half-softening temperature thereof is 200° C. or lower, the Vickers hardness thereof is 55 Hv or more, and the residual resistance ratio (RRR) thereof is 50 or more and 500 or less.
    Type: Application
    Filed: October 30, 2018
    Publication date: October 29, 2020
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kosei FUKUOKA, Yuki ITO, Kazunari MAKI
  • Publication number: 20200002787
    Abstract: The stabilizer material for superconductor of the present invention is used for a superconducting wire, and the stabilizer material for superconductor includes a copper material, the copper material contains one kind or more of additive elements selected from Mg, Mn, Ti, Y, and Zr for a total amount of 3 ppm by mass or more and 100 ppm by mass or less, with the remainder being Cu and unavoidable impurities, the total concentration of the unavoidable impurities other than O, H, C, N, and S, which are gas components, is 5 ppm by mass or more and 100 ppm by mass or less, and compounds including one kind or more selected from MgS, MgSO4, MnS, TiS, YS, Y2SO2, and ZrS are present in the matrix.
    Type: Application
    Filed: April 3, 2017
    Publication date: January 2, 2020
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kosei FUKUOKA, Yuki ITO, Kazunari MAKI
  • Publication number: 20190338396
    Abstract: This stabilizer material for superconductor includes a copper material, wherein the copper material contains one kind or two kinds or more of additive elements selected from Ca, La, and Ce for a total amount of 3 ppm by mass or more and 400 ppm by mass or less, with the remainder being Cu and unavoidable impurities, and the total concentration of the unavoidable impurities other than O, H, C, N, and S, which are gas components, is 5 ppm by mass or more and 100 ppm by mass or less, and compounds including one kind or two kinds or more selected from CaS, CaSO4, LaS, La2SO2, CeS, and Ce2SO2 are present in the matrix.
    Type: Application
    Filed: April 3, 2017
    Publication date: November 7, 2019
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kosei FUKUOKA, Yuki ITO, Kazunari MAKI
  • Publication number: 20190066865
    Abstract: This superconducting wire includes: a strand including a superconducting material; and a stabilizer material for superconductor arranged in contact with the strand, wherein the stabilizer material for superconductor includes a copper material which contains one kind or two kinds or more of additive elements selected from Ca, Sr, Ba, and rare earth elements (RE) for a total amount of 3 ppm by mass or more and 400 ppm by mass or less, with the remainder being Cu and unavoidable impurities, the total concentration of the unavoidable impurities other than O, H, C, N, and S, which are gas components, is 5 ppm by mass or more and 100 ppm by mass or less, and compounds including one kind or two kinds or more selected from CaS, CaSO4, SrS, SrSO4, BaS, BaSO4, (RE)S, and (RE)2SO2 are present in the matrix.
    Type: Application
    Filed: April 3, 2017
    Publication date: February 28, 2019
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kosei FUKUOKA, Yuki ITO, Kazunari MAKI
  • Publication number: 20180005731
    Abstract: The present invention is a superconducting wire including: a wire formed of a superconducting material; and a superconducting stabilization material disposed in contact with the wire, in which the superconducting stabilization material is formed of a copper material which contains: one or more types of additive elements selected from Ca, Sr, Ba, and rare earth elements in a total of 3 ppm by mass to 400 ppm by mass; a balance being Cu and inevitable impurities, and in which a total concentration of the inevitable impurities excluding O, H, C, N, and S which are gas components is 5 ppm by mass to 100 ppm by mass.
    Type: Application
    Filed: December 22, 2015
    Publication date: January 4, 2018
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kosei FUKUOKA, Yuki ITO, Kazunari MAKI