Patents by Inventor Kostadin Dimitrov Djordjev

Kostadin Dimitrov Djordjev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200380232
    Abstract: An acoustic receiver system may be configured for receiving dynamic friction acoustic waves produced via relative motion between an outer surface of an apparatus and a target object in contact with the outer surface. A control system may be configured for receiving acoustic signals from the acoustic receiver system. The acoustic signals may correspond to a first instance of the dynamic friction acoustic waves. The control system may be configured for extracting target object features from the first acoustic signals and for performing an authentication process based, at least in part, on the target object features.
    Type: Application
    Filed: May 30, 2019
    Publication date: December 3, 2020
    Inventors: Soon Joon Yoon, Hrishikesh Vijaykumar Panchawagh, Jessica Liu Strohmann, Kostadin Dimitrov Djordjev
  • Publication number: 20200363516
    Abstract: Techniques for operating an ultrasonic sensor array, the ultrasonic sensor array disposed under a platen, include: making a determination whether or not to recalibrate the ultrasonic sensor array based on whether a first screen protector disposed above the platen has been removed or replaced by a second screen protector; and recalibrating the ultrasonic sensor array, when the determination is to recalibrate the ultrasonic sensor array. In some cases, the techniques include prompting a user to indicate whether or not the screen protector has been changed or removed, and recalibrating the ultrasonic sensor array only after confirmation from the user.
    Type: Application
    Filed: May 16, 2019
    Publication date: November 19, 2020
    Inventors: Yipeng Lu, Hrishikesh Vijaykumar Panchawagh, Jessica Liu Strohmann, Kostadin Dimitrov Djordjev
  • Patent number: 10831290
    Abstract: A stylus-tracking device may include a piezoelectric receiver or transceiver array on a first side (e.g., underneath) a display. Image data may be acquired from the piezoelectric receiver array. The image data may correspond to signals produced by the piezoelectric receiver array in response to an acoustic signal and/or a mechanical deformation caused by a target object (e.g., a stylus) in contact with a surface, such as a cover glass, proximate a second side of the display. A doublet pattern in the image data may include a first area of having signals below a threshold level and a second area having signals above the threshold level. Based on one or more doublet pattern characteristics, a position of the target object on the surface, a force of the target object on the surface and/or a first direction of movement of the target object relative to the surface may be estimated.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: November 10, 2020
    Assignee: QUALCOMM Incorporated
    Inventors: Hrishikesh Vijaykumar Panchawagh, Kostadin Dimitrov Djordjev, Changting Xu
  • Publication number: 20200279087
    Abstract: An ultrasonic fingerprint sensor system of the present disclosure may be provided with an ultrasonic transmitter or ultrasonic transceiver having an electrode layer divided into a plurality of electrode segments. The ultrasonic fingerprint sensor system may detect an object over one or more electrode segments and provide a voltage burst to one or more selected electrode segments for localized generation of ultrasonic waves. The localized generation of ultrasonic waves may facilitate localized readout for imaging. In some implementations, the voltage burst may be provided in a single-ended drive scheme or differential drive scheme.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 3, 2020
    Inventors: Jae Hyeong Seo, Kostadin Dimitrov Djordjev, Hrishikesh Vijaykumar Panchawagh, Sameer Wadhwa, Nicholas Ian Buchan, Yipeng Lu
  • Publication number: 20200272255
    Abstract: A stylus-tracking device may include a piezoelectric receiver or transceiver array on a first side (e.g., underneath) a display. Image data may be acquired from the piezoelectric receiver array. The image data may correspond to signals produced by the piezoelectric receiver array in response to an acoustic signal and/or a mechanical deformation caused by a target object (e.g., a stylus) in contact with a surface, such as a cover glass, proximate a second side of the display. A doublet pattern in the image data may include a first area of having signals below a threshold level and a second area having signals above the threshold level. Based on one or more doublet pattern characteristics, a position of the target object on the surface, a force of the target object on the surface and/or a first direction of movement of the target object relative to the surface may be estimated.
    Type: Application
    Filed: February 22, 2019
    Publication date: August 27, 2020
    Inventors: Hrishikesh Vijaykumar Panchawagh, Kostadin Dimitrov Djordjev, Changting Xu
  • Publication number: 20200234021
    Abstract: An ultrasonic fingerprint sensor system of the present disclosure may be provided with a thick electrically nonconductive acoustic layer and thin electrode layer coupled to a piezoelectric layer of an ultrasonic transmitter or transceiver. The thick electrically nonconductive acoustic layer may have a high density or high acoustic impedance value, and may be adjacent to the piezoelectric layer. The thin electrode layer may be divided into electrode segments. The ultrasonic fingerprint sensor system may use flexible or rigid substrates, and may use an ultrasonic transceiver or an ultrasonic transmitter separate from an ultrasonic receiver.
    Type: Application
    Filed: January 18, 2019
    Publication date: July 23, 2020
    Inventors: Yipeng Lu, Hrishikesh Vijaykumar Panchawagh, Kostadin Dimitrov Djordjev, Chin-Jen Tseng, Nicholas Ian Buchan, Tsongming Kao, Jae Hyeong Seo
  • Patent number: 10699095
    Abstract: This disclosure provides systems, methods and apparatus for a controller configured to switch operation of a fingerprint sensor among operational modes. In one aspect, a fingerprint sensor may switch from operating in a first operational mode to a second operational mode based on one or more characteristics of fingerprint image data generated with the fingerprint sensor operating in the first operational mode. One of the first operational mode or the second operational mode may be a capacitive sensing mode, and the other may be an ultrasonic sensing mode.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: June 30, 2020
    Assignee: QUALCOMM Incorporated
    Inventors: Hrishikesh Vijaykumar Panchawagh, Kostadin Dimitrov Djordjev
  • Publication number: 20200125815
    Abstract: An ultrasonic fingerprint sensor system of the present disclosure may be provided with a flexible substrate. The ultrasonic fingerprint sensor system may include a film stack disposed on the flexible substrate that provides acceptable acoustic coupling for fingerprint sensing. The ultrasonic fingerprint sensor system includes a high acoustic impedance layer in an acoustic path of ultrasonic waves through a display. The high acoustic impedance layer can be electrically conductive or electrically nonconductive. In some implementations, the ultrasonic fingerprint sensor system includes an ultrasonic transceiver or an ultrasonic transmitter separate from an ultrasonic receiver.
    Type: Application
    Filed: July 29, 2019
    Publication date: April 23, 2020
    Inventors: Yipeng Lu, Hrishikesh Vijaykumar Panchawagh, Kostadin Dimitrov Djordjev, Jae Hyeong Seo, Nicholas Ian Buchan, Chin-Jen Tseng, Tsongming Kao
  • Patent number: 10503948
    Abstract: Systems and methods for multi-spectral ultrasonic imaging are disclosed. In one embodiment, a finger is scanned at a plurality of ultrasonic scan frequencies. Each scan frequency provides an image information set describing a plurality of pixels of the finger including a signal-strength indicating an amount of energy reflected from a surface of a platen on which a finger is provided. For each of the pixels, the pixel output value corresponding to each of the scan frequencies is combined to produce a combined pixel out put value for each pixel. Systems and methods for improving the data capture of multi-spectral ultrasonic imaging are also disclosed.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: December 10, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Jack Conway Kitchens, II, John Keith Schneider, Ashish Hinger, Ranjith Ranganathan, Nai-Kuei Kuo, Kostadin Dimitrov Djordjev, Stephen Michael Gojevic, David William Burns, Nao Sugawara Chuei, Eliza Yingzi Du, Ming Yu Chen, Kwokleung Chan, Jin Gu, Esra Vural
  • Patent number: 10497748
    Abstract: An ultrasonic sensor pixel includes a substrate, a piezoelectric micromechanical ultrasonic transducer (PMUT) and a sensor pixel circuit. The PMUT includes a piezoelectric layer stack including a piezoelectric layer disposed over a cavity, the cavity being disposed between the piezoelectric layer stack and the substrate, a reference electrode disposed between the piezoelectric layer and the cavity, and one or both of a receive electrode and a transmit electrode disposed on or proximate to a first surface of the piezoelectric layer, the first surface being opposite from the cavity. The sensor pixel circuit is electrically coupled with one or more of the reference electrode, the receive electrode and the transmit electrode and the PMUT and the sensor pixel circuit are integrated with the sensor pixel circuit on the substrate.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: December 3, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Hrishikesh Vijaykumar Panchawagh, Suryaprakash Ganti, Kostadin Dimitrov Djordjev, David William Burns, Timothy Alan Dickinson, Donald William Kidwell, Jr., Ravindra Vaman Shenoy, Jon Bradley Lasiter, Hao-Yen Tang, Yipeng Lu
  • Patent number: 10274590
    Abstract: Techniques describe structures and methods for generating larger output signals and improving image quality of ultrasonic sensors by inclusion of an acoustic cavity in the sensor stack. In some embodiments, an ultrasonic sensor unit may be tuned during manufacturing or during a provisioning phase to work with different thicknesses and materials. In some embodiments, a standing wave signal may be generated using an acoustic cavity in the ultrasonic sensor unit for capturing an ultrasonic image of an object placed on a sensor surface. In some implementations, the ultrasonic sensor may include an ultrasonic transmitter, a piezoelectric receiver, a thin film transistor (TFT) layer and a TFT substrate positioned between the transmitter and the receiver, one or more adhesive layers, and optional cover materials and coatings. The thickness, density and speed of sound of the sensor materials and associated adhesive attachment layers may be used to attain the desired acoustic cavity and improved performance.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: April 30, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Nai-Kuei Kuo, Kostadin Dimitrov Djordjev, Ranjith Ranganathan, Nao Sugawara Chuei, Ashish Hinger, David William Burns
  • Patent number: 10254901
    Abstract: An apparatus includes an integrated circuit configured to be operatively coupled to a sensor array that is configured to generate an ultrasonic wave. The integrated circuit includes a transmitter circuit configured to provide a first signal to the sensor array. The integrated circuit further includes a receiver circuit configured to receive a second signal from the sensor array in response to providing the first signal. The sensor array includes an ultrasonic transmitter configured to generate the ultrasonic wave in response to the first signal and a piezoelectric receiver layer configured to detect a reflection of the ultrasonic wave.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: April 9, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Timothy Dickinson, Lennart Karl-Axel Mathe, Scott McCarthy, Kostadin Dimitrov Djordjev, Louis Dominic Oliveira, Qubo Zhou
  • Publication number: 20180373913
    Abstract: Disclosed are methods, devices, apparatuses, and systems for an under-display ultrasonic fingerprint sensor. A display device may include a platen, a display underlying the platen, and an ultrasonic fingerprint sensor underlying the display, where the ultrasonic fingerprint sensor is configured to transmit and receive ultrasonic waves via an acoustic path through the platen and the display. A light-blocking layer and/or an electrical shielding layer may be provided between the ultrasonic fingerprint sensor and the display, where the light-blocking layer and/or the electrical shielding layer are in the acoustic path. A mechanical stress isolation layer may be provided between the ultrasonic fingerprint sensor and the display, where the mechanical stress isolation layer is in the acoustic path.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 27, 2018
    Inventors: Hrishikesh Vijaykumar Panchawagh, Ila Ravindra Badge, Yipeng Lu, Kostadin Dimitrov Djordjev, Suryaprakash Ganti, Chin-Jen Tseng, Nicholas Ian Buchan, Tsongming Kao, Leonard Eugene Fennell, Firas Sammoura, Jessica Liu Strohmann, David William Burns
  • Publication number: 20180336388
    Abstract: This disclosure provides systems, methods and apparatus for a controller configured to switch operation of a fingerprint sensor among operational modes. In one aspect, a fingerprint sensor may switch from operating in a first operational mode to a second operational mode based on one or more characteristics of fingerprint image data generated with the fingerprint sensor operating in the first operational mode. One of the first operational mode or the second operational mode may be a capacitive sensing mode, and the other may be an ultrasonic sensing mode.
    Type: Application
    Filed: July 30, 2018
    Publication date: November 22, 2018
    Inventors: Hrishikesh Vijaykumar Panchawagh, Kostadin Dimitrov Djordjev
  • Patent number: 10127425
    Abstract: This disclosure provides systems, methods and apparatus for a controller configured to switch operation of a fingerprint sensor among operational modes. In one aspect, a fingerprint sensor may switch from operating in a first operational mode to a second operational mode based on one or more characteristics of fingerprint image data generated with the fingerprint sensor operating in the first operational mode. One of the first operational mode or the second operational mode may be a capacitive sensing mode, and the other may be an ultrasonic sensing mode.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: November 13, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Hrishikesh Vijaykumar Panchawagh, Kostadin Dimitrov Djordjev
  • Patent number: 10067229
    Abstract: Methods, systems and storage media are described, each of which may be used to generate an image of an object using ultrasonic plane waves. For example, the generated image may be of a target object positioned on a platen surface. The image may be derived from corrected output signals obtained from a plurality of selected sensor pixels. The corrected output signals may adjust for diffraction of reflected ultrasonic plane waves from a target object positioned on the platen surface. The target object may be a finger or a tip of a stylus.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: September 4, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Kostadin Dimitrov Djordjev, Christopher Mark William Daft, David William Burns, Ashish Hinger, Hrishikesh Vijaykumar Panchawagh
  • Patent number: 10036734
    Abstract: This disclosure provides systems, methods and apparatus related to an ultrasonic sensor for detecting ultrasonic energy. In some implementations, the ultrasonic sensor includes a piezoelectric receiver layer bonded with an adhesive to an array of pixel circuits disposed on a substrate, each pixel circuit in the array including at least one thin film transistor (TFT) element and having a pixel input electrode electrically coupled to the pixel circuit. Methods of forming ultrasonic sensors include bonding piezoelectric receiver layers to TFT arrays.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: July 31, 2018
    Assignee: SNAPTRACK, Inc.
    Inventors: Leonard Eugene Fennell, Nicholas Ian Buchan, David William Burns, Kostadin Dimitrov Djordjev, Stephen Michael Gojevic, Jack Conway Kitchens, II, John Keith Schneider, Nathaniel Robert Bennett, Kristopher Andrew Lavery
  • Publication number: 20180196982
    Abstract: This disclosure provides systems, methods and apparatus for a controller configured to switch operation of a fingerprint sensor among operational modes. In one aspect, a fingerprint sensor may switch from operating in a first operational mode to a second operational mode based on one or more characteristics of fingerprint image data generated with the fingerprint sensor operating in the first operational mode. One of the first operational mode or the second operational mode may be a capacitive sensing mode, and the other may be an ultrasonic sensing mode.
    Type: Application
    Filed: January 12, 2017
    Publication date: July 12, 2018
    Inventors: Hrishikesh Vijaykumar Panchawagh, Kostadin Dimitrov Djordjev
  • Patent number: 10001552
    Abstract: A piezoelectric micromechanical ultrasonic transducer (PMUT) includes a diaphragm disposed over a cavity, the diaphragm including a piezoelectric layer stack including a piezoelectric layer, a first electrode electrically coupled with transceiver circuitry, and a second electrode electrically coupled with the transceiver circuitry. The first electrode may be disposed in a first portion of the diaphragm, and the second electrode may be disposed in a second, separate, portion of the diaphragm. Each of the first and the second electrode is disposed on or proximate to a first surface of the piezoelectric layer, the first surface being opposite from the cavity. The PMUT is configured to transmit first ultrasonic signals by way of the first electrode during a first time period and to receive second ultrasonic signals by way of the second electrode during a second time period, the first time period and the second time period being at least partially overlapping.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: June 19, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Hrishikesh Vijaykumar Panchawagh, Hao-Yen Tang, Yipeng Lu, Kostadin Dimitrov Djordjev, Suryaprakash Ganti, David William Burns, Ravindra Vaman Shenoy, Jon Bradley Lasiter, Nai-Kuei Kuo, Firas Sammoura
  • Patent number: 9990089
    Abstract: A method of operation of an ultrasonic sensor array includes receiving a receiver bias voltage at a receiver bias electrode of the ultrasonic sensor array to bias piezoelectric sensor elements of the ultrasonic sensor array. The method further includes receiving a transmitter control signal at the ultrasonic sensor array to cause an ultrasonic transmitter of the ultrasonic sensor array to generate an ultrasonic wave. The method further includes generating data samples based on a reflection of the ultrasonic wave. The receiver bias voltage and the transmitter control signal are received from an integrated circuit that is coupled to the ultrasonic sensor array.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: June 5, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Timothy Dickinson, Lennart Karl-Axel Mathe, Scott McCarthy, Kostadin Dimitrov Djordjev, Louis Dominic Oliveira, Qubo Zhou