Patents by Inventor Kostadin Vardin

Kostadin Vardin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9820887
    Abstract: A surgical system includes a laser source to generate a first set of laser pulses; a guiding optic to guide the first set of laser pulses to a target region; a laser controller to generate an electronic representation of a target scan pattern, and to control the guiding optic to scan the first set of laser pulses according to a portion of the target scan pattern to create a first photo-disrupted region in the target region; and a OCT imaging system to generate an image of a portion of the first photo-disrupted region. The laser controller can generate an electronic representation of a modified scan pattern in relation to the image generated by the SS-OCT imaging system, and control the guiding optic to scan a second set of laser pulses according the modified scan pattern.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: November 21, 2017
    Assignee: Alcon LenSx, Inc.
    Inventors: Ilya Goldshleger, Guy Holland, Adam Juhasz, Ronald M. Kurtz, Kostadin Vardin
  • Patent number: 9724237
    Abstract: A cataract surgical system includes a laser source to generate a first set of laser pulses; a guiding optic to guide the first set of laser pulses to a target region in an eye; a laser controller to generate an electronic representation of a target scan pattern, and to control the guiding optic to scan the first set of laser pulses according to a portion of the target scan pattern to create a first photo-disrupted region in the target region; and an Optical Coherence Tomographic (OCT) imaging system to generate an image of a portion of the first photo-disrupted region. The laser controller can generate an electronic representation of a modified scan pattern in relation to the image generated by the OCT imaging system, and control the guiding optic to scan a second set of laser pulses according the modified scan pattern.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: August 8, 2017
    Assignee: ALCON LENSX, INC.
    Inventors: Ilya Goldshleger, Guy Holland, Adam Juhasz, Ronald M. Kurtz, Kostadin Vardin
  • Publication number: 20160367399
    Abstract: A cataract surgical system includes a laser source to generate a first set of laser pulses; a guiding optic to guide the first set of laser pulses to a target region in an eye; a laser controller to generate an electronic representation of a target scan pattern, and to control the guiding optic to scan the first set of laser pulses according to a portion of the target scan pattern to create a first photo-disrupted region in the target region; and an Optical Coherence Tomographic (OCT) imaging system to generate an image of a portion of the first photo-disrupted region. The laser controller can generate an electronic representation of a modified scan pattern in relation to the image generated by the OCT imaging system, and control the guiding optic to scan a second set of laser pulses according the modified scan pattern.
    Type: Application
    Filed: August 29, 2016
    Publication date: December 22, 2016
    Inventors: ILYA GOLDSHLEGER, GUY HOLLAND, ADAM JUHASZ, RONALD M. KURTZ, KOSTADIN VARDIN
  • Publication number: 20160361200
    Abstract: A surgical system includes a laser source to generate a first set of laser pulses; a guiding optic to guide the first set of laser pulses to a target region; a laser controller to generate an electronic representation of a target scan pattern, and to control the guiding optic to scan the first set of laser pulses according to a portion of the target scan pattern to create a first photo-disrupted region in the target region; and a OCT imaging system to generate an image of a portion of the first photo-disrupted region. The laser controller can generate an electronic representation of a modified scan pattern in relation to the image generated by the SS-OCT imaging system, and control the guiding optic to scan a second set of laser pulses according the modified scan pattern.
    Type: Application
    Filed: August 26, 2016
    Publication date: December 15, 2016
    Inventors: ILYA GOLDSHLEGER, GUY HOLLAND, ADAM JUHASZ, RONALD M. KURTZ, KOSTADIN VARDIN
  • Patent number: 9456926
    Abstract: A cataract surgical system includes a laser source to generate a first set of laser pulses; a guiding optic to guide the first set of laser pulses to a cataract target region in an eye; a laser controller to generate an electronic representation of a target scan pattern, and to control the guiding optic to scan the first set of laser pulses according to a portion of the target scan pattern to create a first photo-disrupted region in the cataract target region; and a Spectral Domain Optical Coherence Tomographic (SD-OCT) imaging system to generate an image of a portion of the first photo-disrupted region. The laser controller can generate an electronic representation of a modified scan pattern in relation to the image generated by the SD-OCT imaging system, and control the guiding optic to scan a second set of laser pulses according the modified scan pattern.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: October 4, 2016
    Assignee: ALCON LENSX, INC.
    Inventors: Ilya Goldshleger, Guy Holland, Adam Juhasz, Ronald M. Kurtz, Kostadin Vardin
  • Patent number: 9456927
    Abstract: A cataract surgical system includes a laser source to generate a first set of laser pulses; a guiding optic to guide the first set of laser pulses to a cataract target region in an eye; a laser controller to generate an electronic representation of a target scan pattern, and to control the guiding optic to scan the first set of laser pulses according to a portion of the target scan pattern to create a first photo-disrupted region in the cataract target region; and a Swept-Source Optical Coherence Tomographic (SS-OCT) imaging system to generate an image of a portion of the first photo-disrupted region. The laser controller can generate an electronic representation of a modified scan pattern in relation to the image generated by the SS-OCT imaging system, and control the guiding optic to scan a second set of laser pulses according the modified scan pattern.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: October 4, 2016
    Assignee: ALCON LENSX, INC.
    Inventors: Ilya Goldshleger, Guy Holland, Adam Juhasz, Ronald M. Kurtz, Kostadin Vardin
  • Publication number: 20150250651
    Abstract: A cataract surgical system includes a laser source to generate a first set of laser pulses; a guiding optic to guide the first set of laser pulses to a cataract target region in an eye; a laser controller to generate an electronic representation of a target scan pattern, and to control the guiding optic to scan the first set of laser pulses according to a portion of the target scan pattern to create a first photo-disrupted region in the cataract target region; and a Spectral Domain Optical Coherence Tomographic (SD-OCT) imaging system to generate an image of a portion of the first photo-disrupted region. The laser controller can generate an electronic representation of a modified scan pattern in relation to the image generated by the SD-OCT imaging system, and control the guiding optic to scan a second set of laser pulses according the modified scan pattern.
    Type: Application
    Filed: May 19, 2015
    Publication date: September 10, 2015
    Inventors: Ilya Goldshleger, Guy Holland, Adam Juhasz, Ronald M. Kurtz, Kostadin Vardin
  • Publication number: 20150209184
    Abstract: A cataract surgical system includes a laser source to generate a first set of laser pulses; a guiding optic to guide the first set of laser pulses to a cataract target region in an eye; a laser controller to generate an electronic representation of a target scan pattern, and to control the guiding optic to scan the first set of laser pulses according to a portion of the target scan pattern to create a first photo-disrupted region in the cataract target region; and a Swept-Source Optical Coherence Tomographic (SS-OCT) imaging system to generate an image of a portion of the first photo-disrupted region. The laser controller can generate an electronic representation of a modified scan pattern in relation to the image generated by the SS-OCT imaging system, and control the guiding optic to scan a second set of laser pulses according the modified scan pattern.
    Type: Application
    Filed: April 6, 2015
    Publication date: July 30, 2015
    Inventors: Ilya Goldshleger, Guy Holland, Adam Juhasz, Ronald M. Kurtz, Kostadin Vardin
  • Patent number: 9066784
    Abstract: A cataract surgical system includes a laser source to generate a first set of laser pulses; a guiding optic to guide the first set of laser pulses to a cataract target region in an eye; a laser controller to generate an electronic representation of a target scan pattern, and to control the guiding optic to scan the first set of laser pulses according to a portion of the target scan pattern to create a first photo-disrupted region in the cataract target region; and a Spectral Domain Optical Coherence Tomographic (SD-OCT) imaging system to generate an image of a portion of the first photo-disrupted region. The laser controller can generate an electronic representation of a modified scan pattern in relation to the image generated by the SD-OCT imaging system, and control the guiding optic to scan a second set of laser pulses according the modified scan pattern.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: June 30, 2015
    Assignee: Alcon LenSx, Inc.
    Inventors: Ilya Goldshleger, Guy Holland, Adam Juhasz, Ronald M. Kurtz, Kostadin Vardin
  • Patent number: 9023016
    Abstract: A cataract surgical system includes a laser source to generate a first set of laser pulses; a guiding optic to guide the first set of laser pulses to a cataract target region in an eye; a laser controller to generate an electronic representation of a target scan pattern, and to control the guiding optic to scan the first set of laser pulses according to a portion of the target scan pattern to create a first photo-disrupted region in the cataract target region; and a Spectral Domain Optical Coherence Tomographic (SD-OCT) imaging system to generate an image of a portion of the first photo-disrupted region. The laser controller can generate an electronic representation of a modified scan pattern in relation to the image generated by the SD-OCT imaging system, and control the guiding optic to scan a second set of laser pulses according the modified scan pattern.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: May 5, 2015
    Assignee: Alcon LenSx, Inc.
    Inventors: Ilya Goldshleger, Guy Holland, Adam Juhasz, Ronald M. Kurtz, Kostadin Vardin
  • Publication number: 20130158531
    Abstract: A cataract surgical system includes a laser source to generate a first set of laser pulses; a guiding optic to guide the first set of laser pulses to a cataract target region in an eye; a laser controller to generate an electronic representation of a target scan pattern, and to control the guiding optic to scan the first set of laser pulses according to a portion of the target scan pattern to create a first photo-disrupted region in the cataract target region; and a Spectral Domain Optical Coherence Tomographic (SD-OCT) imaging system to generate an image of a portion of the first photo-disrupted region. The laser controller can generate an electronic representation of a modified scan pattern in relation to the image generated by the SD-OCT imaging system, and control the guiding optic to scan a second set of laser pulses according the modified scan pattern.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 20, 2013
    Inventors: Ilya GOLDSHLEGER, Guy HOLLAND, Adam JUHASZ, Ronald M. KURTZ, Kostadin VARDIN
  • Publication number: 20130158530
    Abstract: A cataract surgical system includes a laser source to generate a first set of laser pulses; a guiding optic to guide the first set of laser pulses to a cataract target region in an eye; a laser controller to generate an electronic representation of a target scan pattern, and to control the guiding optic to scan the first set of laser pulses according to a portion of the target scan pattern to create a first photo-disrupted region in the cataract target region; and a Spectral Domain Optical Coherence Tomographic (SD-OCT) imaging system to generate an image of a portion of the first photo-disrupted region. The laser controller can generate an electronic representation of a modified scan pattern in relation to the image generated by the SD-OCT imaging system, and control the guiding optic to scan a second set of laser pulses according the modified scan pattern.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 20, 2013
    Inventors: Ilya Goldshleger, Guy Holland, Adam Juhasz, Ronald M. Kurtz, Kostadin Vardin
  • Patent number: 8398236
    Abstract: A docking method for an ophthalmic system may include the steps of aligning a docking unit of the ophthalmic system and an eye; generating an image of an internal structure of the eye by an imaging system; improving an alignment of the docking unit with the internal structure of the eye in relation to the generated image; and docking the docking unit to the eye. The generating the image step may include computing scanning data by a processor corresponding to a scanning pattern; storing the scanning data in a data buffer; transferring the scanning data by the data buffer to an output module; outputting scanning signals by the output module to one or more scanners based on the scanning data; and scanning an imaging beam with the one or more scanners according to the scanning signals.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: March 19, 2013
    Assignee: Alcon LenSx, Inc.
    Inventors: Adam Juhasz, Kostadin Vardin
  • Publication number: 20110304819
    Abstract: A docking method for an ophthalmic system may include the steps of aligning a docking unit of the ophthalmic system and an eye; generating an image of an internal structure of the eye by an imaging system; improving an alignment of the docking unit with the internal structure of the eye in relation to the generated image; and docking the docking unit to the eye. The generating the image step may include computing scanning data by a processor corresponding to a scanning pattern; storing the scanning data in a data buffer; transferring the scanning data by the data buffer to an output module; outputting scanning signals by the output module to one or more scanners based on the scanning data; and scanning an imaging beam with the one or more scanners according to the scanning signals.
    Type: Application
    Filed: June 14, 2010
    Publication date: December 15, 2011
    Inventors: Adam Juhasz, Kostadin Vardin