Patents by Inventor Kota Akaiwa

Kota Akaiwa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9396873
    Abstract: Provided is a dust core and a method for manufacturing a thereof, having an effect that the soft magnetic powder is prevented from sintering and bonding together upon heating, the hysteresis loss can be effectively reduced, and the DC B-H characteristics is excellent. In a first mixing process, a soft magnetic powder composed mainly of iron and an inorganic insulating powder of 0.4 wt %-1.5 wt % are mixed by a mixer. A mixture obtained in the first mixing process is heated in a non-oxidizing atmosphere at 1000° C. or more and below a sintering temperature of the soft magnetic powder. In a binder addition process, a silane coupling agent of 0.1-0.5 wt % is added. A binder, e.g. a silicone resin of 0.5-2.0 wt % is added to the soft magnetic alloy powder to which the inorganic insulating powder is attached by the silane coupling agent, and the soft magnetic alloy powders are bonded to each other so as to be granulated.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: July 19, 2016
    Assignee: Tamura Corporation
    Inventors: Yasuo Oshima, Susumu Handa, Kota Akaiwa
  • Patent number: 8810353
    Abstract: In a first mixing process, soft magnetic powders and inorganic insulative powders of 0.4-1.5 wt % relative to the soft magnetic powders are mixed. In the heating process, a mixture through the first mixing process is heated at a temperature of 1000° C. or more and below the sintering temperature of the soft magnetic powders under a non-oxidizing atmosphere. In the granulating process, a silane coupling agent of 0.1-0.5 wt % is added to form an adhesiveness enhancing layer. A silicon resin of 0.5-2.0 wt % is added to the soft magnetic alloy powders having the adhesiveness enhancing layer formed by the silane coupling agent to form a binding layer. A lubricating resin is mixed, and a mixture is pressed and molded to form a mold. In an annealing process, the mold is annealed under a non-oxidizing atmosphere to form a dust core which is used to form a reactor.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: August 19, 2014
    Assignee: Tamura Corporation
    Inventors: Yasuo Oshima, Susumu Handa, Kota Akaiwa, Taichi Tamura
  • Publication number: 20120326830
    Abstract: In a first mixing process, soft magnetic powders and inorganic insulative powders of 0.4-1.5 wt % relative to the soft magnetic powders are mixed. In the heating process, a mixture through the first mixing process is heated at a temperature of 1000° C. or more and below the sintering temperature of the soft magnetic powders under a non-oxidizing atmosphere. In the granulating process, a silane coupling agent of 0.1-0.5 wt % is added to form an adhesiveness enhancing layer. A silicon resin of 0.5-2.0 wt % is added to the soft magnetic alloy powders having the adhesiveness enhancing layer formed by the silane coupling agent to form a binding layer. A lubricating resin is mixed, and a mixture is pressed and molded to form a mold. In an annealing process, the mold is annealed under a non-oxidizing atmosphere to form a dust core which is used to form a reactor.
    Type: Application
    Filed: December 20, 2010
    Publication date: December 27, 2012
    Inventors: Yasuo Oshima, Susumu Handa, Kota Akaiwa, Taichi Tamura
  • Publication number: 20120001719
    Abstract: Provided is a dust core and a method for manufacturing a thereof, having an effect that the soft magnetic powder is prevented from sintering and bonding together upon heating, the hysteresis loss can be effectively reduced, and the DC B-H characteristics is excellent. In a first mixing process, a soft magnetic powder composed mainly of iron and an inorganic insulating powder of 0.4 wt %-1.5 wt % are mixed by a mixer. A mixture obtained in the first mixing process is heated in a non-oxidizing atmosphere at 1000° C. or more and below a sintering temperature of the soft magnetic powder. In a binder addition process, a silane coupling agent of 0.1-0.5 wt % is added. A binder, e.g. a silicone resin of 0.5-2.0 wt % is added to the soft magnetic alloy powder to which the inorganic insulating powder is attached by the silane coupling agent, and the soft magnetic alloy powders are bonded to each other so as to be granulated.
    Type: Application
    Filed: April 28, 2010
    Publication date: January 5, 2012
    Inventors: Yasuo Oshima, Susumu Handa, Kota Akaiwa